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Regression data with atypical features
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Figure: Fitting MoLE to the tone data set with ten outliers (0, 4).

Heterogeneous regression data

Data with possible atypical observations

Data with possibly asymmetric and heavy-tailed distributions

Objectives

Derive robust models to fit at best the data

Deal with other possible features like skewness, heavy tails
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Scientific context

Analysis of clustered regression data

,! exploratory analysis

,! decisional analysis: make decision and prediction for future data

Topics

density estimation

regression

clustering/segmentation

Mixture modeling framework

Mixture density: f(x) =
PK

k=1

P(z = k)f(x|z = k) =

PK
k=1

⇡kfk(x)

Generative model: z ⇠ M(1;⇡

1

, . . . ,⇡k) then x|z ⇠ f(x|z)

Derive a robust model for fitting from such data
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Related work

Observed pairs of data (x, y) where y 2 R is the response for some
covariate x 2 Rp governed by a hidden categorical random variable Z

Mixture of regressions

f(y|x; ) =

KX

k=1

⇡

k

f

k

(y|x; 
k

)

Bai et al. (2012); Wei (2012): robust regression mixture based on the

t distribution

Ingrassia et al. (2012): Cluster-weighted modeling based on the t

distribution

Song et al. (2014): robust regression mixture based on the Laplace

distribution

,! A mixture of experts (MoE) framework (Jacobs et al., 1991; Jordan

and Jacobs, 1994)

Parameter vector:  = (↵

T

1

, . . . ,↵

T

K�1

, 

T

1

, . . . , 

T

K

)

T where

 

k

= (�

T

k

,�

2

k

,�

k

, ⌫

k

)

T is the parameter vector for the kth skew t expert
component whose density is defined by

Objectives

Overcome (well-known) limitations of modeling with the normal

distribution.

,! Not adapted for a set of data containing a group or groups of

observations with asymmetric behavior, heavy tails or atypical

observations
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Mixture of Experts (MoE) modeling framework

Observed pairs of data (x, y) where y 2 R is the response for some covariate
x 2 Rp governed by a hidden categorical random variable Z

Mixture of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs, 1994) :

f(y|x; ) =

KX

k=1

⇡k(r;↵)| {z }
Gating network

fk(y|x; k)| {z }
Experts

Gating function of some predictors r 2 Rq: ⇡k(r;↵) =
exp (↵

T
k r)PK

`=1 exp (↵

T
` r)

MoE for regression usually use normal experts fk(y|x; k)

Objectives

Overcome (well-known) limitations of modeling with the normal distribution.

,! Not adapted for a set of data containing a group or groups of
observations with asymmetric behavior, heavy tails or atypical observations
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Non-normal mixtures of experts

Li et al. (2010): Bayesian mixture of asymmetric t experts

Nguyen and McLachlan (2016): Mixture of Laplace experts

Non-normal mixtures of experts (NNMoE)

1 the t MoE (TMoE) (Robustness, heavy tails)

2 the skew-t MoE (STMoE) (skewness, robustness, heavy tails)

Correspond to extensions of the mixture of t distributions (Mclachlan and Peel,
1998) for regression (Bai et al., 2012; Wei, 2012) and the mixture of skew t

distributions (Lin et al., 2007a) to the MoE modeling framework
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⇡k = [0.4, 0.6], µk = [�1, 2]; �k = [1, 1]; ⌫k = [3, 7]; �k = [14,�12];
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The skew t mixture of experts (STMoE) model

A K-component mixture of skew t experts (STMoE) is defined by:

f(y|r,x; ) =

KX

k=1

⇡k(r;↵) ST(y;µ(x;�k),�
2

k,�k, ⌫k)

kth expert: has skew t distribution (Azzalini and Capitanio, 2003):

f

�
y|x;µ(x;�k),�

2

,�, ⌫

�
=

2

�

t⌫(dy(x)) T⌫+1

 
� dy(x)

s
⌫ + 1

⌫ + d

2

y(x)

!

where dy(x) =
y�µ(x;�k)

� .

Model characteristics

,! For {⌫k} ! 1, the STMoE reduces to the SNMoE

,! For {�k} ! 0, the STMoE reduces to the TMoE.

,! For {⌫k} ! 1 and {�k} ! 0, it approaches the NMoE.

,! The STMoE is flexible as it generalizes the (skew)-normal and t MoE
models to accommodate situations with asymmetry, heavy tails, and outliers.
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Representation of the STMoE model

Stochastic representation Suppose that conditional on a Multinomial
categorical variable Zi, Ei and Wi are independent univariate random
variables such that Ei ⇠ SN(�zi) and Wi ⇠ Gamma(

⌫zi
2

,

⌫zi
2

), and xi and
ri are given covariates. A variable Yi having the following representation:

Yi = µ(xi;�zi) + �zi
Eip
Wi

is said to follow the STMoE distribution

Hierarchical representation

Yi|ui, wi, Zik = 1,xi ⇠ N

✓
µ(xi;�k) + �k|ui|,

1� �

2

k

wi
�

2

k

◆
,

Ui|wi, Zik = 1 ⇠ N

✓
0,

�

2

k

wi

◆
,

Wi|Zik = 1 ⇠ Gamma
⇣
⌫k

2

,

⌫k

2

⌘

Zi|ri ⇠ Mult
�
1;⇡

1

(ri;↵), . . . ,⇡K(ri;↵)

�
.

The variables Ui and Wi are hidden in this hierarchical representation
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Identifiability of the STMoE model

f(.; ) is identifiable when f(.; ) = f(.; 

?
) if and only if  =  

?.
Ordered, initialized, and irreducible STMoEs are identifiable:

Ordered implies that there exist a certain ordering relationship such that
(�

T
1

,�

2

1

,�

1

, ⌫

1

)

T � . . . � (�

T
K ,�

2

K ,�K , ⌫K)

T ;

initialized implies that ↵K is the null vector, as assumed in the model

irreducible implies that if k 6= k0, then one of the following conditions holds:
�k 6= �k0, �k 6= �k0, �k 6= �k0 or ⌫k 6= ⌫k0.

) Then, we can establish the identifiability of ordered and initialized irreducible
STMoE models by applying Lemma 2 of Jiang and Tanner (1999), which requires
the validation of the following nondegeneracy condition:

The set {ST(y;µ(x;�
1

),�

2

1

,�

1

, ⌫

1

), . . . , ST(y;µ(x;�
4K),�

2

4K ,�

4K , ⌫

4K)}
contains 4K linearly independent functions of y, for any 4K distinct
quadruplet (µ(x;�k),�

2

k,�k, ⌫k) for k = 1, . . . , 4K.

Thus, via Lemma 2 of Jiang and Tanner (1999) we have any ordered and
initialized irreducible STMoE is identifiable.
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Parameter estimation via the ECM algorithm

Parameter vector:  = (↵

T
1

, . . . ,↵

T
K�1

,✓

T
1

, . . . ,✓

T
K , ⌫

1

, . . . , ⌫K)

T where
✓k = (�

T
k ,�

2

k,�k)
T

Maximize the observed-data log-likelihood:

logL( ) =

nX

i=1

log

KX

k=1

⇡k(ri;↵)ST(y;µ(xi;�k),�
2

k,�k, ⌫k) ·

,! iteratively by the ECM algorithm (Meng and Rubin, 1993)

The complete-data log-likelihood:

logLc( )= logL

1c(↵) +

KX

k=1

⇥
logL

2c(✓k) + logL

3c(⌫k)
⇤

where
logL

1c(↵)=

nX

i=1

KX

k=1

Zik log ⇡k(ri;↵),

logL

2c(✓k)=

nX

i=1

Zik

h
� log(2⇡�

2

k)�
1

2

log(1� �

2

k)�
Wi d

2

ik

2(1� �

2

k)
+

Wi Ui �k dik

(1� �

2

k)�k
�

Wi U

2

i

2(1� �

2

k)�
2

k

i
,

logL

3c(⌫k)=

nX

i=1

Zik

h
� log�

⇣
⌫k

2

⌘
+

⇣
⌫k

2

⌘
log

⇣
⌫k

2

⌘
+

⇣
⌫k

2

⌘
log(Wi)�

⇣
⌫k

2

⌘
Wi

i
·
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MLE via the ECM algorithm: E-Step

E-Step Calculates the conditional expectation of the complete-data
log-likelihood, given the observed data {yi,xi, ri}ni=1

and a current
parameter estimation  (m):

Q( ; 

(m)

) = Q

1

(↵; 

(m)

) +

KX

k=1

h
Q

2

(✓k, 
(m)

) +Q

3

(⌫k, 
(m)

)

i
,

where

Q

1

(↵; 

(m)

) =

nX

i=1

KX

k=1

⌧

(m)

ik log ⇡k(ri;↵),

Q

2

(✓k; 
(m)

) =

nX

i=1

⌧

(m)

ik

"
� log(2⇡�

2

k)�
1

2

log(1� �

2

k)�
w

(m)

ik d

2

ik

2(1� �

2

k)
+

�k dik e

(m)

1,ik

(1� �

2

k)�k
�

e

(m)

2,ik

2(1� �

2

k)�
2

k

#
,

Q

3

(⌫k; 
(m)

) =

nX

i=1

⌧

(m)

ik

h
� log�

⇣
⌫k

2

⌘
+

⇣
⌫k

2

⌘
log

⇣
⌫k

2

⌘
�

⇣
⌫k

2

⌘
w

(m)

ik +

⇣
⌫k

2

⌘
e

(m)

3,ik

i
.
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Parameter estimation via the ECM algorithm

1 E-Step: requires the following conditional expectations:

⌧

(m)

ik = E
 

(m) [Zik|yi,xi, ri] ,

w

(m)

ik = E
 

(m) [Wi|yi, Zik = 1,xi, ri] ,

e

(m)

1,ik = E
 

(m) [WiUi|yi, Zik = 1,xi, ri] ,

e

(m)

2,ik = E
 

(m)

⇥
WiU

2

i |yi, Zik = 1,xi, ri

⇤
,

e

(m)

3,ik = E
 

(m) [log(Wi)|yi, Zik = 1,xi, ri] ·

,! Calculated analytically except e(m)

3,ik ,! I adopted a one-step-late (OSL)
approach as in Lee and McLachlan (2014)

,! Note that Lee and McLachlan (2015) presented an exact series-based
truncation approach for the multivariate skew t mixture models

2 CM-Steps:  (m+1)

= argmax

 2⌦ Q( ; 

(m)

)
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SToME: ECM algorithm: M-Step

CM-Step 1 update the mixing parameters ↵(m+1) by:

↵

(m+1)

= argmax

↵

nX

i=1

KX

k=1

⌧

(m)

ik log ⇡k(ri;↵)

,! Iteratively Reweighted Least Squares (IRLS) algorithm

↵

(l+1)

= ↵

(l) �
h
@

2

Q

1

(↵, 

(q)
)

@↵@↵

T

i�1

↵=↵

(l)

@Q

1

(↵, 

(q)
)

@↵

���
↵=↵

(l)

I A convex optimization problem
I Analytic calculation of the Hessian and the gradient

CM-Step 2 Update the regression params (�
T (m+1)

k ,�

2

k
(m+1)

): For the polynomial

regressors: µ(x;�k) = �

T
k x we have analytic weighted regressions updates:

�

(m+1)

k =

h nX

i=1

⌧

(q)
ik w

(m)

ik xix
T
i

i�1

nX

i=1

⌧

(q)
ik

⇣
w

(m)

ik yi � e

(m)

1,ik�
(m+1)

k

⌘
xi,

�

2

k
(m+1)

=

Pn
i=1

⌧

(m)

ik

h
w

(m)

ik

⇣
yi � �

T
k
(m+1)

xi

⌘
2

� 2�

(m+1)

k e

(m)

1,ik(yi � �

T
k
(m+1)

xi) + e

(m)

2,ik

i

2

⇣
1� �

2

k
(m)

⌘Pn
i=1

⌧

(m)

ik

·
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ECM algorithm for the STMoE: M-Step

CM-Step 3 Update the skewness parameters �k as solution of

�k(1 � �2k)
nX

i=1

⌧
(m)
ik + (1 + �2k)

nX

i=1

⌧
(m)
ik

d
(m+1)
ik e

(m)
1,ik

�
(m+1)
k

� �k

nX

i=1

⌧
(m)
ik

h
w

(m)
ik d2ik

(m+1)
+

e
(m)
2,ik

�2
k
(m+1)

i
= 0 ·

CM-Step 4 Update the degree of freedom ⌫k as solution of:

� 
⇣
⌫k

2

⌘
+ log

⇣
⌫k

2

⌘
+ 1 +

Pn
i=1

⌧

(m)

ik

⇣
e

(m)

3,ik � w

(m)

ik

⌘

Pn
i=1

⌧

(m)

ik

= 0.

,! Use a root finding algorithm, such as Brent’s method (Brent, 1973)

Prediction Predicted response: ŷ = E
 ̂

(Y |r,x) for ⌫̂k > 1:

E ̂ (Y |r,x) =
PK

k=1

⇡k(r; ˆ↵)

⇣
ˆ

�

T
k x+ �̂k

ˆ

�k ⇠(⌫̂k)

⌘
where ⇠(⌫̂k) =

q
⌫̂k
⇡

�

⇣
⌫̂k
2 � 1

2

⌘

�

⇣
⌫̂k
2

⌘

Clustering of regression data Calculate the cluster label as

ẑi = arg

K
max

k=1

E[Zi|ri,xi;
ˆ

 ] = arg

K
max

k=1

⇡k(r;
ˆ

 )fk

⇣
yi|ri,xi;

ˆ

 k

⌘

PK
k0=1

⇡k0(r; ˆ↵)fk0
⇣
yi|ri,xi;

ˆ

 k0
⌘

Model selection The value of (K, p) can be computed by using BIC, ICL
Number of free parameters: ⌘

 

= K(p+ 6)� 2 for the STMoE model.
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ECM algorithm for the STMoE: M-Step

CM-Step 3 Update the skewness parameters �k as solution of

�k(1 � �2k)
nX

i=1

⌧
(m)
ik + (1 + �2k)

nX

i=1

⌧
(m)
ik

d
(m+1)
ik e

(m)
1,ik

�
(m+1)
k

� �k

nX

i=1

⌧
(m)
ik

h
w

(m)
ik d2ik

(m+1)
+

e
(m)
2,ik

�2
k
(m+1)

i
= 0 ·

CM-Step 4 Update the degree of freedom ⌫k as solution of:

� 
⇣
⌫k

2

⌘
+ log

⇣
⌫k

2

⌘
+ 1 +

Pn
i=1

⌧

(m)

ik

⇣
e

(m)

3,ik � w

(m)

ik

⌘

Pn
i=1

⌧

(m)

ik

= 0.

,! Use a root finding algorithm, such as Brent’s method (Brent, 1973)

Prediction Predicted response: ŷ = E
 ̂

(Y |r,x) for ⌫̂k > 1:

E ̂ (Y |r,x) =
PK

k=1

⇡k(r; ˆ↵)

⇣
ˆ

�

T
k x+ �̂k

ˆ

�k ⇠(⌫̂k)

⌘
where ⇠(⌫̂k) =

q
⌫̂k
⇡

�

⇣
⌫̂k
2 � 1

2

⌘

�

⇣
⌫̂k
2

⌘

Clustering of regression data Calculate the cluster label as

ẑi = arg

K
max

k=1

E[Zi|ri,xi;
ˆ

 ] = arg

K
max

k=1

⇡k(r;
ˆ

 )fk

⇣
yi|ri,xi;

ˆ

 k

⌘

PK
k0=1

⇡k0(r; ˆ↵)fk0
⇣
yi|ri,xi;

ˆ

 k0
⌘

Model selection The value of (K, p) can be computed by using BIC, ICL
Number of free parameters: ⌘

 

= K(p+ 6)� 2 for the STMoE model.
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Temperature anomalies data set
Data have been analyzed earlier by Hansen et al. (1999, 2001) and recently by

Nguyen and McLachlan (2016) by using Laplace mixture of linear experts

n = 135 yearly measurements of the global annual temperature anomalies for the

period of 1882� 2012.
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Figure: Fitting the MoLE models to the temperature anomalies data set.
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Temperature anomalies data set
Data have been analyzed earlier by Hansen et al. (1999, 2001) and recently by

Nguyen and McLachlan (2016) by using Laplace mixture of linear experts

n = 135 yearly measurements of the global annual temperature anomalies for the

period of 1882� 2012.
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Figure: Fitting the MoLE models to the temperature anomalies data set.
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Both the TMoE and STMoE fits provide a degrees of freedom more

than 17, which tends to approach a normal distribution.

On the other hand, the regression coe�cients are also similar to those

found by Nguyen and McLachlan (2016) who used a Laplace mixture

of linear experts.

Model selection : Except the result provided by AIC for the NMoE

model which overestimates the number of components, all the others

results provide evidence for two components in the data.

NMoE SNMoE TMoE STMoE
K BIC AIC ICL BIC AIC ICL BIC AIC ICL BIC AIC ICL

1 46.0623 50.4202 46.0623 43.6096 49.4202 43.6096 43.5521 49.3627 43.5521 40.9715 48.2347 40.9715
2 79.9163 91.5374 79.6241 75.0116 89.5380 74.7395 74.7960 89.3224 74.5279 69.6382 87.0698 69.3416
3 71.3963 90.2806 58.4874 63.9254 87.1676 50.8704 63.9709 87.2131 47.3643 54.1267 81.7268 30.6556
4 66.7276 92.8751 54.7524 55.4731 87.4312 41.1699 56.8410 88.7990 45.1251 42.3087 80.0773 20.4948
5 59.5100 92.9206 51.2429 45.3469 86.0207 41.0906 43.7767 84.4505 29.3881 28.0371 75.9742 -8.8817

Table: Choosing the number of expert components K for the temperature anomalies data by
using the information criteria BIC, AIC, and ICL.

Faicel Chamroukhi Robust non-normal mixture of experts 18/27



Tone perception data set
Recently studied by Bai et al. (2012) and Song et al. (2014) by using, respectively,

robust t regression mixture and Laplace regression mixture

Data consist of n = 150 pairs of “tuned” variables, considered here as predictors

(x), and their corresponding “strech ratio” variables considered as responses (y).
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Figure: Fitting the MoE models to the tone data set
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Model selection

NMoE SNMoE TMoE STMoE
K BIC AIC ICL BIC AIC ICL BIC AIC ICL BIC AIC ICL

1 1.8662 6.3821 1.8662 -0.6391 5.3821 -0.6391 71.3931 77.4143 71.3931 69.5326 77.0592 69.5326
2 122.8050 134.8476 107.3840 122.8725 132.8471 102.4049 204.8241 219.8773 186.8415 92.4352 110.4990 82.4552
3 118.1939 137.7630 76.5249 117.7939 146.9576 98.0442 199.4030 223.4880 183.0389 77.9753 106.5764 52.5642
4 121.7031 148.7989 94.4606 109.5917 142.7087 97.6108 201.8046 234.9216 187.7673 77.7092 116.8474 56.3654
5 141.6961 176.3184 123.6550 107.2795 149.4284 96.6832 187.8652 230.0141 164.9629 79.0439 128.7194 67.7485

Table: Choosing the number of experts K for the original tone perception data.
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Robustness of the NNMoE
Experimental protocol as in Nguyen and McLachlan (2016)
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Figure: Fitted MoE to n = 500 observations generated according to the NMoE: NMoE fit (top),
TMoE fit (middle), STMoE fit (bottom).
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Robustness of the NNMoE
Experimental protocol as in Nguyen and McLachlan (2016)
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Figure: Fitted MoE to n = 500 observations generated according to the NMoE with 5% of
outliers (x; y = �2): NMoE fit (top), TMoE fit (middle), STMoE fit (bottom).
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Robustness of the NNMoE

MSE 1

n

Pn
i=1

||E
 

(Yi|ri,xi)� E
 ̂

(Yi|ri,xi)||2 for di↵erent noise levels

Model | Outliers 0% 1% 2% 3% 4% 5%

N
M
oE

NMoE 0.0001783 0.001057 0.001241 0.003631 0.013257 0.028966
SNMoE 0.0001798 0.003479 0.004258 0.015288 0.022056 0.028967
TMoE 0.0001685 0.000566 0.000464 0.000221 0.000263 0.000045
STMoE 0.0002586 0.000741 0.000794 0.000696 0.000697 0.000626

S
N
M
oE

NMoE 0.0000229 0.000403 0.004012 0.002793 0.018247 0.031673
SNMoE 0.0000228 0.000371 0.004010 0.002599 0.018247 0.031674
TMoE 0.0000325 0.000089 0.000130 0.000513 0.000108 0.000355
STMoE 0.0000562 0.000144 0.000022 0.000268 0.000152 0.001041

T
M
oE

NMoE 0.0002579 0.0004660 0.002779 0.015692 0.005823 0.005419
SNMoE 0.0002587 0.0004659 0.006743 0.015686 0.005835 0.004813
TMoE 0.0002529 0.0002520 0.000144 0.000157 0.000488 0.000045
STMoE 0.0002473 0.0002451 0.000173 0.000176 0.000214 0.000291

S
T
M
oE

NMoE 0.000710 0.0007238 0.001048 0.006066 0.012457 0.031644
SNMoE 0.000713 0.0009550 0.001045 0.006064 0.012456 0.031644
TMoE 0.000279 0.0003808 0.000371 0.000609 0.000651 0.000609
STMoE 0.000280 0.0001865 0.000447 0.000600 0.000509 0.000602

Table: MSE between the estimated mean function and the true one

When there is no outliers (c = 0%), the error of the TMoE is less than those of

the other models, for the four situations, that is including the case where the data

are not generated according to it, which is somewhat surprising. This includes the

case where the data are generated according to the NMoE model, for which the

TMoE error is slightly less than the one of the NMoE model. Then, it can be

seen that when there is outliers, the TMoE model outperforms the other models

for almost all the situations, except the one in which the data are generated

according to the STMoE model. When the data do not contain outliers and are

generated from the STMoE, this one indeed outperforms the NMoE and SNMoE

models. For the situation when there is no outliers and the data are generated

according to the TMoE or the STMoE, these two models may provide

quasi-identical results. In the case of presence of outliers in data generated from

the STMoE, this one outperforms the NMoE and SNMoE models for all the

situations, and outperforms the TMoE for the majority of situations, namely when

the number of the outliers is more than 2%. Also, for all the situations with

outliers, as expected, the TMoE and STMoE models always provide the best

results. These two models are indeed much more robust to outliers compared to

the normal and skew-normal ones because the expert components in these two

models follow a robust distribution, that is the t distribution for the TMoE, and

the skew t distribution for the STMoE. The NMoE and SNMoE are sensitive to

outliers. When there is outliers, the SNMoE behavior is comparable to the one of

the NMoE. But the SNMoE is more adapted to skewed data compared to the

standard NMoE model. However, when the number of outliers is increasing, the

increase in the error of the NMoE and SNMoE model is more pronounced

compared to the one of the TMoE and STMoE models. The error for both the

TMoE and STMoE may indeed slightly increase, remain stable or even decrease in

some situations. This supports the expected robustness of the TMoE and STMoE

models.
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Tone perception data set (noisy case)
Consider the same scenario used in Bai et al. (2012) and Song et al. (2014) (the

last and more di�cult scenario) by adding 10 identical pairs (0, 4)
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Figure: Fitting MoLE to the tone data set with ten added outliers (0, 4).

,! In this noisy case the t mixture of regressions fails (is a↵ected severely by the

outliers) as showed in Song et al. (2014)
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Temporal railway data

n = 562 temporal data

30 added artificial outliers
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Summary

The STMoE model is suggested for possibly noisy and heterogeneous

regression data

it also dedicated to acoomodate regression data with possibly possibly

non-symmetric and heavy tailed distribution

Outputs: density estimation, non-linear regression function

approximation and clustering for regression data

The model selection using information criteria tends to promote using

BIC and ICL against AIC

Perspectives

Here we only considered the MoE in their standard (non-hierarchical)

version. ,! One interesting future direction is therefore to extend it

to the hierarchical mixture of experts framework (Jordan and Jacobs,

1994).

extension to the multiple regression regression setting

Faicel Chamroukhi Robust non-normal mixture of experts 27/27



Thank you!
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