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Temporal data with regime changes
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Several regimes over time ⇒ Abrupt and/or smooth regime changes

Multidimensional temporal data

Objective

Temporal data modeling and segmentation
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Many curves to analyze
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Objectives

Curve classification/clustering (functional data analysis framework)

Deal with the problem of regime changes

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 3



Data with possible atypical observations, skewed
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Figure: Fitting MoLE to the tone data set with ten outliers (0, 4).

Objectives

Derive robust models to fit at best the data and deal with possible

features like skewness, heavy tails
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Latent data models for temporal data segmentation

This first research theme concerns the modeling and segmentation of

complex temporal data, univariate and multivariate, and directly

follows some of work I developed during my PhD thesis.

This research axis can be organized into two sub-axes which are

developed in what follows.

1 Latent process regression models for univariate time series [J-1] [J,2]

[J-3]

2 Latent data models for dealing with the joint segmentation of

multivariate time series [J-6][J-7][J-15].

This main part initiated in 2010 was conducted in the framework of the

PhD thesis of Dorra Trabelsi1

1
D. Trabelsi. Contribution à la reconnaissance non-intrusive d’activités humaines. Ph.D. thesis, Université Paris-Est Créteil,

Laboratoire Images, Signaux et Systèmes Intelligents (LiSSi), June 2013
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Introduction

Context

In many application domains of data analysis, the data to be analyzed

are presented as time series (also called signals, curves, etc).

Time series analysis is a popular problem with a broad literature, and

is studied by several scientific communities, including statistics,

(statistical) signal processing, economics as well as statistical learning.

In this study, we particularly focus on complex non-stationary time

series that present non-linearities through various regime changes.

Objectives: approximation, representation, summarizing model for

prediction, segmentation for further categorization, etc.

The problem of time series analysis is in reformulated into a time

series segmentation problem

The general problem of time series segmentation is common for

different communities, including statistics, detection, signal

processing, and machine learning.
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Introduction

Here I mainly consider the framework of statistical learning of latent

data models.

Mixture models (Titterington et al., 1985; McLachlan and Peel., 2000;

Frühwirth-Schnatter, 2006) and hidden Markov models (HMMs)

(Rabiner and Juang, 1986; Rabiner, 1989; Frühwirth-Schnatter, 2006)

are two well-known widely used examples of such models.

In this framework of regime changing time series, it is natural to think

that the observed time series is generated by an underlying stochastic

process, with several possibly parametric states.

⇒ The problem of time series modeling and segmentation therefore

becomes the one of recovering the underling process and inferring the

statistical parameters of each of its states.

Classical approaches particularly concern abrupt change point

detection ⇒ Hence, if the regime changes may be smooth and/or

abrupt, the piecewise regression model and the HMM based models,

are not appropriate to provide smooth approximations.
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Introduction

Contribution
Conventional solutions are subject to limitations in the control of the

transitions between these states, leading to a non-smooth approximation.

One can force the resulting approximation to be regular, but this leads to

combinatorial optimization problems for the choice of the change points.

Relaxing the regularity conditions leads to efficient dynamic programming

algorithms, but also to non-smooth approximations.

⇒ I relied on generative latent data modeling

The regression model with a hidden logistic process (RHLP) [J-1], addresses

these issues: accurate regular curve approximation and segmentation.

The RHLP which represents a dynamical mixture model, allows for

activating, simultaneously and preferentially, time-varying polynomial

regression models with both smooth and abrupt regime changes.

Also an alternative to solve the classical nonlinear regression problem [J-3].

Two EM variants for efficient model inference

Then, I studied the problem of modeling and joint segmentation of

multivariate temporal data with hidden process regression models [J-6][J-7]

The aim of the analysis might be two-fold, that is i) to build a dedicated

generative model, possibly parametric, to capture the dynamical behavior of

the data, that is, mainly through detecting the temporal regime locations,

while ii) providing a precise approximation to preserve a relevant data

representation.
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Introduction

Regression with hidden logistic process

The developed models are based on (multiple) regression with hidden

processes.

The aim of regression is to explore the relationship of an observed

random variable Y given a covariate vector X ∈ Rp via conditional

density functions for Y |X = x of the form f(y|x), rather than only

exploring the unconditional distribution of Y .

For time series, the independent vector x in general relates the

sampling time t, which we will consider hereafter.

We are interested in parametric (non-)linear regression functions

f(y|x) = µ(x;β).

Let y = (y1, . . . , yn) be a time series composed of n univariate

observations yi ∈ R (i = 1, . . . , n) observed at the time points

t = (t1, . . . , tn).

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 11



Regression with hidden logistic process

The regression with hidden logistic process (RHLP)

The RHLP model assumes that the observed time series is governed by a

K-“state” hidden process z = (z1, . . . , zn) with the categorical random

variable zi ∈ {1, . . . ,K} representing the unknown (hidden) label of the

regime (Gaussian) generating the ith observation yi

yi = βTzixi + σziεi ; εi ∼ N (0, 1), (i = 1, . . . , n)

where βzi ∈ Rp+1 is the regression coefficient vector, xi = (1, ti, . . . , t
p
i )
T is

the time dependent predictor, σ2
zi the associated noise variance.

The process Z = (Z1, . . . , Zm) is assumed to be logistic: the hidden variable

Zi that allows to switch from one regression model to another during time

follows the multinomial logistic distribution M(1, π1(ti; w), . . . , πK(ti; w)):

πk(ti; w) = P(Zi = k|ti; w) =
exp (wT

k vi)∑K
`=1 exp (wT

` vi)
,

where vi = (1, ti, , . . . , t
u
i )T ∈ Ru+1 is a time-dependent covariate vector,

wk ∈ Ru+1 is its associated coefficients vi and

w = (wT
1 , . . . ,w

T
K−1)T ∈ R(K−1)×(u+1) with wK being the null vector.

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 12



Regression with hidden logistic process

The regression with hidden logistic process (RHLP)

Modeling with the logistic distribution allows activating simultaneously and

preferentially several regimes during time

Flexibility of the logistic distribution: πr(ti; w) = exp (λr(ti+γr))∑K
k=1 exp (λ`(ti+γ`))

⇒ The parameter λr controls the quality of transitions between regimes

⇒ The parameter γr is related to the transition time

If the goal is to segment the curves into contiguous segments, use linear

logistic functions, that is by setting the value u of wk to 1 (used hereafter)
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Regression with hidden logistic process

The regression with hidden logistic process (RHLP)

A K-component RHLP is defined by the following dynamical conditional

mixture density:

f(yi|ti;θ) =

K∑
k=1

πk(ti; w)N
(
yi;β

T
k xi, σ

2
k

)
,

Parameter vector: θ = (wT ,βT1 , . . . ,β
T
K , σ

2
1 , . . . , σ

2
K)T

In the RHLP model, both the mixing proportions and the component

parameters are time-varying, contrary to for example standard switching

regression models or mixture of regression models

It can be seen as a mixture of experts (ME) (Jordan and Jacobs, 1994)

where the logistic weights are time-dependent, that is, the particular

covariate variable used for the mixing proportions represents the time.
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Regression with hidden logistic process

Illustration of the principle of the method
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Regression with hidden logistic process

Illustration of the principle of the method
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K = 5 polynomial components of degree p = 2
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Regression with hidden logistic process

MLE of the RHLP via a dedicated EM

The parameter vector θ is estimated by monotonically maximizing the

observed-data likelihood:

logL(θ;y, t) =

n∑
i=1

log

K∑
k=1

πk(ti; w)N
(
yi;β

T
k xi, σ

2
k

)
Can not be performed in a closed form since the data are incomplete,

that is, the labels (z1, . . . , zm) indicating from which component each

observation of the time series is originated from, are unknown.

⇒ The EM algorithm (Dempster et al., 1977; McLachlan and

Krishnan, 2008) is particularly adapted to achieve this task [J-1].

Complete-data log-likelihood

logLc(θ;y, t, z) =

n∑
i=1

K∑
k=1

zik log[πk(ti; w)N
(
yi;β

T
k xi, σ

2
k

)
]

zik = 1 if zi = k (i.e., when yi is belongs to the kth regime)

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 16



Regression with hidden logistic process

EM algorithm for the RHLP

The E-Step computes the expected complete-data log-likelihood, given the

observations (t,y) and a current parameter estimation θ(q)

Q(θ,θ(q)) = E
[
logLc(θ;y, t, z)|y, t;θ(q)

]
=

n∑
i=1

K∑
k=1

τ
(q)
ik

[
log πk(ti; w)N

(
yi;β

T
k xi, σ

2
k

)]
,

⇒ simply requires calculation the posterior probability τ
(q)
ik that yi

(i = 1, . . . ,m) originates from regime k (k = 1, . . . ,K):

τ
(q)
ik = P(Zi = k|yi, ti;θ(q)) =

πk(ti;w
(q))N (yi;β

T (q)
k xi, σ

2(q)
k )∑K

`=1 π`(ti;w
(q))N (yi;β

T (q)
` xi, σ

2(q)
` )

·

The M-Step computes the parameter vector update θ(q+1) by maximizing

the expected complete-data log-likelihood, that is,

θ(q+1) = arg max
θ∈Θ

Q(θ,θ(q))

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 17



Regression with hidden logistic process

EM algorithm for the RHLP: M-Step

The maximization of the Q-function w.r.t the regression coefficient vector

βk for each component k consists in analytically solving a weighted

least-squares problem and the one w.r.t σ2
k is a weighted variant of the

problem of estimating the variance of an univariate Gaussian density:

β
(q+1)
k =

[ n∑
i=1

τ
(q)
ik xix

T
i

]−1 n∑
i=1

τ
(q)
ik yixi,

σ2
k
(q+1)

=
1∑n

i=1 τ
(q)
ik

n∑
i=1

τ
(q)
ik (yi − βT (q+1)

k xi)
2.

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 18



Regression with hidden logistic process

EM algorithm for the RHLP: M-Step

The maximization with respect to w is a multinomial logistic regression

problem weighted by the τ
(q)
ik ’s; however cannot be solved in a closed form.

⇒ It is solved with a multi-class Iteratively Reweighted Least Squares

(IRLS) algorithm (Green, 1984; Chen et al., 1999)

w(l+1) = w(l) −
[∂2Qw(w,θ(q))

∂w∂wT

]−1
w=w(l)

∂Qw(w,θ(q))

∂w

∣∣∣
w=w(l)

A convex optimization problem

Analytic calculation of the Hessian and the gradient

The EM-RHLP algorithm has a complexity of O(IEMIIRLSK
3p3n), where IEM

is the number of iterations of the EM algorithm (more advantageous than

dynamic programming).

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 19



Regression with hidden logistic process

Time series approximation and segmentation

1 Approximation: a prototype mean curve

ŷi = E[yi|ti; θ̂] =

K∑
k=1

πk(ti; ŵ)β̂
T

k xi

• A smooth and flexible approximation thanks to the the logistic weights

• The RHLP can be used to solve the nonlinear regression model

yi = f(ti;θ) + εi by covering regression functions of the form

f(ti;θ) =
∑K
k=1 πk(ti; w)βTk xi,

2 Curve segmentation:

ẑi = arg max
1≤k≤K

E[zi|ti; ŵ] = arg max
1≤k≤K

πk(ti; ŵ)

3 Model selection Application of BIC, ICL

BIC(K, p) = logL(θ̂)− νθ log(n)
2 ; ICL(K, p) = logLc(θ̂)− νθ log(n)

2

where νθ = K(p+ 4)− 2.
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Regression with hidden logistic process

Evaluation in modeling and segmentation

Approximation error as a function

of the speed of transitions
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Regression with hidden logistic process

Evaluation in approximation and segmentation

varying m varying σ
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Regression with hidden logistic process

Application of the RHLP to real data
Approximation of real time series issued from railway diagnosis application

The data are the power signals during high-speed railway switch operations,

each operation signal is composed of five successive movements
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Multiple hidden process regression

Multiple hidden process regression for joint

segmentation of multivariate time series

Extend the previous framework to the joint segmentation of

multivariate time series with regime changes

Let Y = (y1, . . . ,yn) be a time series of n multidimensional

observations yi = (y
(1)
i , . . . , y

(d)
i )T ∈ Rd observed at the time points

t = (t1, . . . , tn).

The univariate components of the multivariate time series are

simultaneously governed by a hidden process and thus the problem of

segmentation becomes the one of recovering the hidden process.

⇒ Multiple regression with hidden process: Multiple RHLP [J-6] and

Multiple hidden Markov model regression [J-7]

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 24



Multiple hidden process regression

Multiple hidden process regression

The multiple regression with hidden process model:

y
(1)
i = β(1)T

zi xi + σ(1)
zi εi

y
(2)
i = β(2)T

zi xi + σ(2)
zi εi

...
...

y
(d)
i = β(d)T

zi xi + σ(d)
zi εi

which can be written in a matrix form as

yi = BT
zixi + ei ; ei ∼ N (0,Σzi), (i = 1, . . . , n)

where Bk =
[
β
(1)
k , . . . ,β

(d)
k

]
is a (p+ 1)× d matrix of regression parameters

of regime Zi = k and Σzi its corresponding d× d covariance matrix.

The latent process z that simultaneously governs the univariate time series

components controls the regime change during time

We investigated the case where this process is logistic (MRHLP) [J-6], and

where it is a Markov chain (MHMMR) [J-7]
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Multiple hidden process regression

Application on human activity time series

MRHLP Segmentation of acceleration data issued from three body-worn
sensors (Data acquired at the LISSI Lab/University of Paris 12)
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Multiple hidden process regression

Multiple hidden Markov model regression
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Multiple hidden process regression

Summary

The RHLP, thanks to its generative modeling, is naturally tailored to

deal with the problem of modeling regime changing time series

The parameter estimates are computed by maximizing the

log-likelihood by using an efficient EM algorithm.

Particularly useful for situations with smooth regime transitions

Good performance on various real data segmentation and

approximation
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Outline
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Model-based curve clustering

Model-based curve clustering

The aim curve clustering is to cluster n iid unlabeled curves

((x1,y1), . . . , (xn,yn)) into K clusters

We assume that each curve consists of m observations

yi = (yi1, . . . , yim) regularly observed at the inputs

xi = (xi1, . . . , xim)

⇒ find the unknown cluster labels z = (z1, . . . , zn), with

zi ∈ {1, . . . ,K}, K being the number of clusters

⇒ the curve clustering can be performed based on regression mixture

models including polynomial regression mixtures (PRM) and

polynomial spline regression mixtures (PSRM) (Gaffney, 2004;

Chamroukhi, 2010).

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 30



Model-based curve clustering

Regression mixtures for model-based curve

clustering

The mixture of polynomial, spline, or B-spline regressions is defined by

f(yi|xi; Ψ) =

K∑
k=1

πk N (yi; Xiβk, σ
2
kIm).

Parameter vector: Ψ = (π1, . . . , πK ,Ψ
T
1 , . . . ,Ψ

T
K)T : where

Ψk = (βTk , σ
2
k)
T are respectively the regression coefficients and the

noise variance

Ψ is estimated by maximizing the log-likelihood:

L(Ψ) =

n∑
i=1

log

K∑
k=1

πk N (yi; Xiβk, σ
2
kIm).

The maximization can be performed iteratively via the EM algorithm

(eg. (Gaffney, 2004))
Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 31



Model-based curve clustering

Limitations

1 The standard EM algorithm for regression mixture model is sensitive

to initialization ⇒ requires careful initialization

2 It requires the number of clusters to be supplied by the user ⇒
requires to deal with the model selection

In general, theses two issues have been considered each separately:
Initialization techniques: randomly, K-means, CEM, etc

Choosing the number of clusters via an afterward model selection

procedure: BIC, AIC, ICL, etc

Idea of the proposed approach [J-8]

⇒ Here we attempt to overcome these limitations simultaneously in

this case of model-based curve clustering

⇒ We propose an EM-like algorithm which is robust with regard

initialization and automatically estimates the number of clusters as

the learning proceeds

⇒A fully unsupervised fitting of regression mixtures
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Penalized maximum likelihood estimation

Penalized maximum likelihood estimation

For estimating the regression mixture model ⇒ maximize a penalized

log-likelihood function rather than the standard log-likelihood (31)

penalize the log-likelihood by a term accounting for the model complexity

Regularization

As the model complexity is mainly governed by the number of clusters (the

hidden variables zi) ⇒ use as penalty the entropy of the hidden variable zi

The (differential) entropy of one variable (zi ∈ {1, . . . ,K}):

H(zi) = −E[log p(zi)] = −
K∑
k=1

πk log πk·

The variables z = (z1, . . . , zn) are i.i.d, ⇒ the whole entropy for z is:

H(z) = −n
K∑
k=1

πk log πk ·
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Penalized maximum likelihood estimation

Penalized maximum likelihood estimation

The objective function we propose to maximize is thus given bu the
following penalized log-likelihood:

J (λ,Ψ) = L(Ψ)− λH(z), λ ≥ 0

=

n∑
i=1

log

K∑
k=1

πkN (yi; Xiβk, σ
2
kIm) + λn

K∑
k=1

πk log πk

L(Ψ) is the observed-data log-likelihood maximized by the standard

EM algorithm for regression mixtures

When the entropy is large, the fitted model is rougher, and when it is

small, the fitted model is smoother.

λ ≥ 0 is a smoothing parameter for establishing a trade-off between

closeness of fit to the data and a smooth fit
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Penalized maximum likelihood estimation

the model parameters Ψ are estimated by maximizing the penalized

observed-data log-likelihood (1) J (λ,Ψ) given an i.i.d dataset of n

curves D = ((x1,y1), . . . , (xn,yn))
J (λ,Ψ) is iteratively maximized by using a dedicated EM-like

algorithm

⇒ The complete-data log-likelihood of Ψ in this penalized case is
given y:

Jc(λ,Ψ) =

n∑
i=1

K∑
k=1

zik log
[
πkN (yi; Xiβk, σ

2
kIm)

]
+ λn

K∑
k=1

πk log πk ·

zik is an indicator binary variable such that zik = 1 iff zi = k (i.e., if

the ith curve (xi,yi) is generated by cluster k)
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Robust EM-like algorithm for regression mixtures

Robust EM-like algorithm for regression mixtures

Start with an initial solution (parameter Ψ(0) and a number of clusters K)

1 E-step Compute the expected penalized complete-data log-likelihood (1)

Q(λ,Ψ; Ψ(q)) = E
[
Jc(λ,Ψ)|D; Ψ(q)

]
=

n∑
i=1

K∑
k=1

τ
(q)
ik log

[
πkN (yi; Xiβk, σ

2
kIm)

]
+ λn

K∑
k=1

πk log πk

⇒ simply consists in computing the posterior cluster probabilities:

τ
(q)
ik =

π
(q)
k N

(
yi; Xiβ

(q)
k , σ

2(q)
k Im

)∑K
h=1 π

(q)
h N (yi; Xiβ

(q)
h , σ

2(q)
h Im)

·

2 M-step Updating step: Ψ(q+1) = arg maxΨQ(λ,Ψ; Ψ(q)).
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Robust EM-like algorithm for regression mixtures

1 The mixing proportions updates are obtained by maximizing the function

Qπ(λ; Ψ(q)) =

n∑
i=1

K∑
k=1

τ
(q)
ik log πk + λ

n∑
i=1

K∑
k=1

πk log πk

⇒ This can be solved using Lagrange multipliers :

π
(q+1)
k =

1

n

n∑
i=1

τ
(q)
ik + λπ

(q)
k

(
log π

(q)
k −

K∑
h=1

π
(q)
h log π

(q)
h

)

2 The regression parameters for each class k are updated by maximizing

QΨk
(λ,βk, σ

2
k; Ψ(q)) =

n∑
i=1

τ
(q)
ik logN (yi; Xiβk, σ

2
kIm)

⇒ consists in analytic solutions of K weighted least-squares problems:

β
(q+1)
k =

[ n∑
i=1

τ
(q)
ik XT

i Xi

]−1 n∑
i=1

τ
(q)
ik XT

i yi σ
2(q+1)
k =

∑n
i=1 τ

(q)
ik ||yi −Xiβk||2

m
∑n
i=1 τ

(q)
ik
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Robust EM-like algorithm for regression mixtures

for very small value of λ: the update of the mixing proportions is

close to the one in the standard EM update

however for a large value of λ : the penalization term will play its role

in order to make clusters competitive ⇒ allows for discarding invalid

clusters and enhancing actual clusters

A cluster k can be discarded if its proportion is less than 1
n

The penalization coefficient λ is set in an adaptive way to be large for

enhancing competition
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Robust EM-like algorithm for regression mixtures

Initialization and stopping rule

initialization of the number of clusters : K(0) = n

initialization of the mixing proportions : π
(0)
k = 1

K(0) ,

(k = 1, . . . ,K(0)),

to initialize the regression parameters βk and the noise variances

σ
2(0)
k , fit a polynomial regression model to each curve k :

β
(0)
k =

(
XTXk

)−1
Xkyk and σ

2(0)
k = 1

m ||yk −Xkβ
(0)
k ||

2.

However, to avoid singularities at the starting point, we set σ
2(0)
k as a

middle value in the following sorted range ||yi −Xβ
(0)
k ||

2 for

i = 1, . . . , n.

⇒ Ψ
(0)
k = (β

(0)
k , σ

2(0)
k ).

The proposed EM algorithm is stopped when the maximum variation

of the estimated regression parameters between two iterations

max1≤k≤K(q) ||β(q+1)
k − β(q)

k || is less than a threshold ε (e.g., 10−6).
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Robust EM-like algorithm for regression mixtures

Experimental study: Waveform curves of Brieman
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Figure: Waveform mean functions from the generative model before the Gaussian

noise is added, and a sample of 150 waveforms.
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Robust EM-like algorithm for regression mixtures

EM-PRM clustering results
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Robust EM−MixReg clustering : iteration 18; K = 3

Figure: Clustering results obtained by the proposed robust EM algorithm and the

PRM (polynomial degree p = 4) model for the waveform data.
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Robust EM-like algorithm for regression mixtures

EM-PSRM clustering results
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Robust EM−MixReg clustering : iteration 17; K = 3

Figure: Clustering results obtained by the proposed robust EM algorithm and the

SRM with a cubic-spline of three knots for the waveform data.

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 42



Robust EM-like algorithm for regression mixtures

EM-PbSRM clustering results
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Robust EM−MixReg clustering : iteration 22; K = 3

Figure: Clustering results obtained by the proposed robust EM algorithm and the

bSRM with a cubic B-spline of three knots for the waveform data.
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Robust EM-like algorithm for regression mixtures

Clustering results

Estimated number of clusters, misclassification error rate and the absolute
error between the true clusters proportions and variances and the
estimated ones.

actual EM-PRM EM-SRM EM-bSRM

K 3 3 3 3

misc. error - 4.31 ± (0.42)% 2.94 ± (0.88)% 2.53 ± (0.70)%

σ1 1 0.128 ± (0.015) 0.108 ± (0.015) 0.103 ± (0.012)

σ2 1 0.102 ± (0.015) 0.090 ± (0.011) 0.079 ± (0.010)

σ3 1 0.223 ± (0.021) 0.180 ± (0.014) 0.141 ± (0.013)

π1
1
3

0.0037 ± (0.0018) 0.0035 ± (0.0015) 0.0034 ± (0.0015)

π2
1
3

0.0029 ± (0.0023) 0.0018 ± (0.0015) 0.0012 ± (0.0011)

π3
1
3

0.0040 ± (0.0062) 0.0037 ± (0.0015) 0.0035 ± (0.0014)

Table: Clustering results over 20 different samples of 500 curves.
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Robust EM-like algorithm for regression mixtures
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Figure: Variation of the number of clusters and the value of the objective

function during the iterations of the algorithm for the PRM (left), SRM (middle)

and bSRM (right) for the waveform data.
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Robust EM-like algorithm for regression mixtures

Experiments on real data
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Figure: Real data: Phonemes of the classes ”ao”, ”aa”, ”iy”, ”dcl”, ”sh” (left),

the Yeast cell cycle data (middle) and the Topex/Poseidon satellite data (right).
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Robust EM-like algorithm for regression mixtures

Phonemes data

1000 log-periodograms (200 per cluster)
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Figure: Phonemes data ”ao”, ”aa”, ”yi”, ”dcl”, ”sh”.
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Robust EM-like algorithm for regression mixtures

Phonemes data
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Figure: Curves of the actual five phoneme classes: ”ao”, ”aa”, ”yi”, ”dcl”, ”sh”.
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Robust EM-like algorithm for regression mixtures

PRM clustering results for Phonemes
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Robust EM−MixReg clustering : iteration 31; K = 5

Figure: Clustering results obtained by the proposed robust EM for PRM (p = 7)
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Robust EM-like algorithm for regression mixtures

PbSRM clustering results for Phonemes
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Robust EM−MixReg clustering : iteration 31; K = 5

Figure: Clustering results obtained by the proposed robust EM for bSRM
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Robust EM-like algorithm for regression mixtures

Clustering results for Phonemes

The spline regression mixture (SRM) results are closely similar to

those provided by the B-spline mixture (bSRM)

The number of phoneme classes is correctly estimated by the three

models.

The spline regression models provide better results in terms of clusters

approximation than the polynomial regression mixture (here p = 7).

Notice that the value of p = 7 correspond to the polynomial regression

mixture model with the best error rate for p varying from 4 to 8.

Values of the estimated number of clusters and the misc. error rates:

EM-PRM EM-SRM EM-bSRM

Estimated K 5 5 5

Misc. error rate 14.29 % 14.09 % 14.2 %

Table: Clustering results for the phonemes data.

The spline regressions mixture perform better than the polynomial

regression mixture. ⇒ In a general use of functional data modeling,

the spline are indeed more adapted than simple polynomial modeling.
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Robust EM-like algorithm for regression mixtures

Clustering results for Phonemes
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Figure: Variation of the number of clusters and the value of the objective

function during the iterations of the algorithm for the PRM (left) and bSRM

(right) for the phonemes data.
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Robust EM-like algorithm for regression mixtures

Yeast cell cycle data

We consider yeast cell cycle data (time course Gene expression data)

as in (Yeung et al., 2001) 2

This data set referred to as the subset of the 5-phase criterion in

(Yeung et al., 2001) contains 384 genes expression levels over 17 time

points.
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Figure: Yeast cell cycle data.

2http://faculty.washington.edu/kayee/model/
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Robust EM-like algorithm for regression mixtures

Yeast cell cycle data
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Figure: The five ”actual” clusters of the used yeast cell cycle data according to

Yeung et al. (2001).
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Robust EM-like algorithm for regression mixtures

SRM Clustering results for the yeast cell cycle data
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Robust EM−MixReg clustering : iteration 87; K = 4

Figure: Clustering results obtained by the proposed robust EM algorithm and the

SRM model with a cubic spline of 7 knots for the yeast cell cycle data.
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Robust EM-like algorithm for regression mixtures

bSRM clustering of the yeast cell cycle data
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Robust EM−MixReg clustering : iteration 84; K = 5
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Figure: Clustering results obtained by the proposed robust EM algorithm and the

bSRM model with a cubic B-spline of 7 knots for the yeast cell cycle data.
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Robust EM-like algorithm for regression mixtures

Clustering results for the yeast cell cycle data

Both the PRM model and the SRM provide similar partitions with

four clusters.

The second and third clusters for PRM and SRM look to be merged

into the second cluster for the bSRM solution and the partition of

(Yeung et al., 2001) .

Note that some model selection criteria in (Yeung et al., 2001) also

provide four clusters in some situations.

the bSRM model infers an accurate partition with the actual number

of clusters. The Rand index for the obtained partition is 0.7914 which

indicates that the partition is quite well defined.
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Robust EM-like algorithm for regression mixtures

Clustering results for the yeast cell cycle data
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Figure: Variation of the number of clusters and the value of the objective

function during the iterations of the algorithm for the PRM (left) and bSRM

(right) for the yeast data.
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Robust EM-like algorithm for regression mixtures

Topex/Poseidon satellite data

The data contain n = 472 waveforms of the measured echoes,

sampled at m = 70 (number of echoes), (used in Dabo-Niang et al.

(2007))

The actual partition is unknown
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Figure: Topex/Poseidon satellite curves.
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Robust EM-like algorithm for regression mixtures

bSRM clustering results for the satellite data
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Robust EM−MixReg clustering : iteration 34; K = 5

Figure: Clustering results obtained by the proposed robust EM algorithm and the

bSRM model with a linear B-spline of 8 knots for the satellite data.

The estimated number of cluster (five) equals the one found by (Dabo-Niang

et al., 2007) who use nonparametric kernel-based unsupervised classification

technique and the partitions are quite similar
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1 Introduction

2 Latent data models for temporal data segmentation

3 Unsupervised learning of regression mixtures

4 Non-normal mixtures of experts

The skew-normal mixture of experts model

The t mixture of experts model

The skew t mixture of experts model

Prediction, clustering and model selection with the non-normal MoE

Experiments

An illustrative example

5 Conclusion and perspectives
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Non-normal mixtures of experts

Problem

Mixture of experts (MoE) is a popular framework for modeling heterogeneity

in data machine learning and statistics

Investigate (MoE) for continuous data, in the case where the expert

components are non-normal, (do not follow the Normal distribution)

Indeed , for a set of data containing a group or groups of observations with

asymmetric behavior, heavy tails or atypical observations, the use of normal

experts may be unsuitable and can unduly affect the fit

Objectives

Overcome these (well-known) limitations of MoE modeling with the normal

distribution.

I proposed three non-normal derivations including two robust mixture of

experts (MoE) models. The proposed models are suitable to accomodate

data which exhibit additional features such as skewness, heavy-tails and

which may be affected by atypical data. I derived dedicated EM and ECM

algorithms for model fitting. This research has lead to the following

pre-publications 108108108 (108 also includes all the developed MoE models

in this framework).
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Mixture of experts for continuous data

Mixture of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs,

1994) are used in regression, classification and clustering.

Observed pairs of data (x, y) where y ∈ R is the response for some

covariate x ∈ Rp governed by a hidden categorical random variable Z

MoE model the component membership variable Z as a logistic

function of some predictors r ∈ Rq (the gating network)

P(Z = k|r;α) = πk(r;α) =
exp (αTk r)∑K
`=1 exp (αT` r)

MoE decompose the nonlinear regression model f(y|x) as:

f(y|x;Ψ) =

K∑
k=1

πk(r;α)fk(y|x;Ψk)

where fk(y|x;Ψk) is the conditional density of a parametric regression

function and the πk’s are covariate-varying mixing proportions.

The model parameter vector: Ψ = (π1, . . . , πK−1,Ψ
T
1 , . . . ,Ψ

T
K)T
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The normal mixture of experts model and its MLE

MoE for regression usually use normal experts fk(y|x;Ψk):

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α)N
(
y;µ(x;βk), σ

2
k

)
where the component means are defined as parametric (non-)linear

regression functions µ(x;βk).

Given an i.i.d sample of n observations (y1, . . . , yn) with the

covariates (x1, . . . ,xn) and (r1, . . . , rn), the NMoE model

parameters are estimated by maximizing the log-likelihood

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)N
(
yi;µ(x;βk), σ

2
k

)
by using the EM algorithm

However, the normal distribution is not adapted to deal with

asymmetric and heavy tailed data. It is also known that the normal

distribution is sensitive to outliers.
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Contribution

I introduced three new non-normal mixture of experts (NNMoE) that

can better accommodate data exhibiting non-normal features,

including asymmetry, heavy-tails, and the presence of outliers.

The models rely on distributions that generalize the normal
distribution:

1 the skew-normal MoE (SNMoE) [J-12]

2 the t MoE (TMoE) [J-13]

3 the skew-t MoE (STMoE) [J-14]

Dedicated E(C)M algorithms are developed to estimate the models

parameters by monotonically maximizing the observed data

log-likelihood.

I describe how the presented models can be used in prediction in

regression as well as in model-based clustering of regression data.
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The skew-normal mixture of experts model

The skew-normal mixture of experts model

The skew-normal mixture of experts (SNMoE) model uses the

skew-normal distribution as density for the expert components.

The skew-normal distribution (Azzalini, 1985, 1986) with location

µ ∈ R, scale σ2 ∈ (0,∞) and skewness λ ∈ R has density

f(y;µ, σ2, λ) =
2

σ
φ(
y − µ
σ

)Φ

(
λ(
y − µ
σ

)

)
where φ(.) and Φ(.) denote, respectively, the pdf and the cdf of the

standard normal distribution.

When the skewness parameter λ = 0, the skew-normal reduces to the

normal distribution.

The presented skew-normal mixture of experts (SNMoE) extends the

skew-normal mixture model (Lin et al., 2007b) to the case of mixture

of experts framework, by considering conditional distributions for both

the mixing proportions and the means of the mixture components.
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The skew-normal mixture of experts model

The skew-normal mixture of experts model

The SNMoE is therefore a MoE model with skew-normal experts and

is defined as follows. Let SN(µ, σ2, λ) denotes a skew-normal

distribution with location parameter µ, scale parameter σ and

skewness parameter λ. A K-component SNMoE is then defined by:

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α)SN
(
y;µ(x;βk), σ

2
k, λk

)
where each expert component k has indeed a skew-normal

distribution, whose density is defined by (1). The parameter vector of

the model is Ψ = (αT1 , . . . ,α
T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T with

Ψk = (βTk , σ
2
k, λk)

T the parameter vector for the kth skewed-normal

expert component.

It is obvious to see that if the skewness parameter λk = 0 for each k,

the SNMoE model reduces to the NMoE model.
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The skew-normal mixture of experts model

The skew-normal mixture of experts model

The SNMoE model is characterized as follows.

Stochastic representation of the SNMoE: A random variable Yi is

said to follow the SNMoE model if it has the following representation:

Yi = µ(xi;βzi) + δziσzi |Ui|+
√

1− δ2zi σziEi.

where U and E be independent univariate random variables following

the standard normal distribution N(0, 1) with pdf φ(.), |U | denotes

the magnitude of U and δzi =
λzi√
1+λ2

zi

where Zi ∈ {1, . . . ,K} is a

categorical variable Zi which follows the multinomial distribution

Zi|ri ∼ Mult(1;π1(ri;α), . . . , πK(ri;α))

where each of the probabilities πzi(ri;α) = P(Zi = zi|ri) is given by

the logistic function.
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The skew-normal mixture of experts model

The skew-normal mixture of experts model

The SNMoE model is characterized as follows.

The stochastic representation of the SNMoE leads to the following

hierarchical representation

Hierarchical representation of the SNMoE

Yi|ui, Zik = 1,xi ∼ N
(
µ(xi;βk) + δk|ui|, (1− δ2k)σ2k

)
,

Ui|Zik = 1 ∼ N(0, σ2k),

Zi|ri ∼ Mult (1;π1(ri;α), . . . , πK(ri;α))

where Zik are the binary latent component-indicators such that

Zik = 1 iff Zi = k, Zi = (Zi1, . . . , ZiK) and δk = λk√
1+λ2

k

This hierarchical incomplete data representation facilitates the

inference scheme by using the ECM algorithm.
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The skew-normal mixture of experts model

MLE via the ECM algorithm

Given an observed i.i.d sample of n observations {(yi,xi, ri)}ni=1, the

parameter vector Ψ of the SNMoE model can be estimated by

maximizing the observed-data log-likelihood:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)SN
(
y;µ(x;βk), σ

2
k, λk

)
.

⇒ A dedicated Expectation Conditional Maximization (ECM)

algorithm

The ECM algorithm (Meng and Rubin, 1993) is an EM variant that

mainly aims at addressing the optimization problem in the M-step of

the EM algorithm. In ECM, the M-step is performed by several

conditional maximization (CM) steps by dividing the parameter space

into sub-spaces. The parameter vector updates are then performed

sequentially, one coordinate block after another in each sub-space.
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The skew-normal mixture of experts model

Maximum likelihood estimation via the ECM

algorithm

The complete-data log-likelihood of Ψ , where the complete-data are
{yi, zi, ui,xi, ri}ni=1, is given by:

logLc(Ψ) = logLc(α) +

K∑
k=1

logLc(Ψk),

with

logLc(α) =

n∑
i=1

K∑
k=1

Zik log πk(ri;α),

logLc(Ψk) =

n∑
i=1

Zik

[
− log(2π)− log(σ2

k)− 1

2
log(1− δ2k)

− d2ik
2(1− δ2k)

+
δk dik ui

(1− δ2k)σk
− u2i

2(1− δ2k)σ2
k

]
,

where dik = yi−µ(xi;βk)
σk

.
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The skew-normal mixture of experts model

ECM for the SNMoE: E-Step

E-Step calculates the Q-function

Q(Ψ ;Ψ (m))=E
[

logLc(Ψ)|{yi,xi, ri}ni=1;Ψ (m)
]
=Q1(α;Ψ (m)) +

K∑
k=1

Q2(Ψk;Ψ (m)),

with
Q1(α;Ψ (m)) =

n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α),

Q2(Ψk;Ψ (m)) =

n∑
i=1

τ
(m)
ik

[
− log(2π)− log(σ2

k)− 1

2
log(1− δ2k)

+
δk dik e

(m)
1,ik

(1− δ2k)σk
−

e
(m)
2,ik

2(1− δ2k)σ2
k

− d2ik
2(1− δ2k)

]
where the required conditional expectations (analytic) are given by:

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

e
(m)
1,ik = EΨ (m) [Ui|Zik = 1, yi,xi, ri] ,

e
(m)
2,ik = EΨ (m)

[
U2
i |Zik = 1, yi,xi, ri

]
.

The τ
(m)
ik ’s represent the posterior distribution of the hidden component

labels Zi and correspond to the posterior memberships of the observed

data. The conditional expectations e
(m)
1,ik and e

(m)
2,ik correspond to the

posterior distribution of the hidden variables Ui and U2
i , respectively. From

(1), (1), and (1), it follows that the Q-function is calculated by
analytically calculating these conditional expectations as shown in 108.
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The skew-normal mixture of experts model

CM-Step 1 Calculate α(m+1) = arg maxαQ1(α;Ψ (m)). does not exist in
closed form (Unlike in skew-normal (regression) mixtures)
The Iteratively Reweighted Least Squares (IRLS) algorithm:

α(l+1) = α(l) −
[∂2Q1(α,Ψ (m))

∂α∂αT

]−1
α=α(l)

∂Q1(α,Ψ (m))

∂α

∣∣∣
α=α(l)

Then, for k = 1 . . . ,K,

CM-Step 2 Calculate β
(m+1)
k by maximizing Q2(Ψk;Ψ

(m))

β
(m+1)
k =

[ n∑
i=1

τ
(m)
ik xix

T
i

]−1 n∑
i=1

τ
(q)
ik

(
yi − δ(m)

k e
(m)
1,ik

)
xi.

CM-Step 3: Calculate σ2k
(m+1)

by maximizing Q2(Ψk;Ψ
(m))

σ2
k

(m+1)
=

∑n
i=1 τ

(m)
ik

[(
yi − βTk

(m+1)
xi
)2

− 2δ
(m+1)
k e

(m)
1,ik(yi − βTk

(m+1)
xi) + e

(m)
2,ik

]
2
(

1− δ2
k

(m)
)∑n

i=1 τ
(m)
ik

·

CM-Step 4 Calculate λ
(m+1)
k by maximizing Q2(Ψk;Ψ

(m)) : Solution of:
σ2
k

(m+1)
δk(1− δ2

k)
∑n
i=1 τ

(m)
ik + (1 + δ2

k)
∑n
i=1 τ

(m)
ik (yi − βTk

(m+1)
xi) e

(m)
1,ik

− δk
∑n
i=1 τ

(m)
ik

[
e

(m)
2,ik +

(
yi − βTk

(m+1)
xi
)2 ]

= 0· root finding (Brent’s method

(Brent, 1973)).

Then, given the update δ
(m+1)
k , the update of the skewness parameter λk

is calculated as λ
(m+1)
k =

δ
(m+1)
k√

1−δ2
k

(m+1)
.

It is obvious to see that when the skewness parameter λk = δk = 0 for all
k, the parameter updates for the SNMoE corresponds to those of the
standard NMoE. Hence, compared to the standard NMoE, the SNMoE
model is characterized by an additional flexibility feature, that is the one
to be handle possibly skewed data.
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The skew-normal mixture of experts model

However, while the SNMoE model is tailored to model the skewness

in the data, it may be not adapted to handle data containing groups

or a group with heavy-tailed distribution.

The NMoE and the SNMoE may thus be affected by outliers.

⇒ Handle the problem of sensitivity of normal mixture of experts to

outliers and heavy tails. I first propose a robust mixture of experts

modeling by using the t distribution.
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The t mixture of experts model

The t mixture of experts model

The proposed t mixture of experts (TMoE) model is based on the t

distribution, which is robust generalization of the normal distribution.

The t distribution is more robust than the normal distribution to

handle outliers in the data and to accommodate data with heavy

tailed distribution.

This has been shown in terms of density modeling and cluster analysis

for multivariate data (Mclachlan and Peel, 1998; Peel and Mclachlan,

2000) as well as for univariate data (Lin et al., 2007a) and regression

mixtures (Bai et al., 2012; Wei, 2012; Ingrassia et al., 2012).

The t-distribution with location µ ∈ R, scale σ2 ∈ (0,∞) and degrees

of freedom ν ∈ (0,∞) has the probability density function

f(y;µ, σ2, ν) =
Γ(ν+1

2 )
√
νπ Γ(ν2 )

(
1 +

d2y
ν

)− ν+1
2

,

where d2y =
(y−µ

σ

)2
denotes the squared Mahalanobis distance
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The t mixture of experts model

The t mixture of experts model

The proposed t mixture of experts model extends the t mixture

model, first proposed by Mclachlan and Peel (1998); Peel and

Mclachlan (2000) for multivariate data, as well as the regression

mixture model using the t-distribution as in (Bai et al., 2012; Wei,

2012; Ingrassia et al., 2012) to the MoE framework.

A K-component TMoE model is defined by:

f(y|r,x;Ψ) =
K∑
k=1

πk(r;α) tνk
(
y;µ(x;βk), σ

2
k, νk

)
.

The parameter vector of the TMoE model is given by

Ψ = (αT1 , . . . ,α
T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T where Ψk = (βTk , σ

2
k, νk)

T

When the robustness parameter νk →∞ for each experts k, the

TMoE model approaches the NMoE model
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The t mixture of experts model

The t mixture of experts model

Stochastic representation for the TMoE Let E ∼ φ(.). Suppose
that, conditional on the hidden variable Zi = zi, a random variable
Wi is distributed as Gamma(

νzi
2 ,

νzi
2 ). Then, given the covariates

(xi, ri), a random variable Yi is said to follow the TMoE model if

Yi = µ(xi;βzi) + σzi
Ei√
Wzi

,

where the categorical variable Zi|ri is multinomial

Hierarchical representation of the TMoE model

Yi|wi, Zik = 1,xi ∼ N

(
µ(xi;βk),

σ2
k

wi

)
,

Wi|Zik = 1 ∼ Gamma
(νk

2
,
νk
2

)
Zi|ri ∼ Mult (1;π1(ri;α), . . . , πK(ri;α)) .

This hierarchical representation involves the hidden variables Zi and

Wi facilitates the ML inference of model parameters Ψ via E(C)M.
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The t mixture of experts model

MLE of the TMoE model

Given an i.i.d sample of n observations, Ψ can be estimated by

maximizing the observed-data log-likelihood:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)tνk
(
y;µ(x;βk), σ

2
k, νk

)
.

⇒ EM algorithm and then describe an ECM extension

The complete data consist of the responses (y1, . . . , yn) and their

corresponding predictors (x1, . . . ,xn) and (r1, . . . , rn), as well as the

latent variables (w1, . . . , wn) (in the hierarchical representation) and

the latent labels (z1, . . . , zn).
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The t mixture of experts model

MLE of the TMoE model

⇒ The complete-data log-likelihood of Ψ is given by:

logLc(Ψ) = logL1c(α) +

K∑
k=1

[
logL2c(Ψk) + logL3c(νk)

]
,

where

logL1c(α)=

n∑
i=1

K∑
k=1

Zik log πk(ri;α),

logL2c(Ψk)=

n∑
i=1

Zik
[
− 1

2
log(2π)− 1

2
log(σ2

k)− 1

2
wid

2
ik

]
,

logL3c(νk)=
n∑
i=1

Zik
[
− log Γ

(νk
2

)
+
(νk

2

)
log
(νk

2

)
+
(νk

2
− 1
)

log(wi)−
(νk

2

)
wi
]
.
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The t mixture of experts model

MLE of the TMoE model: E-Step

E-Step Calculate the Q-function:

Q(Ψ ;Ψ (m)) = Q1(α;Ψ (m)) +

K∑
k=1

[
Q2(θk,Ψ

(m)) +Q3(νk,Ψ
(m))

]
,

where θk = (βTk , σ
2
k)
T and

Q1(α;Ψ (m)) =
n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α),

Q2(θk;Ψ (m)) =

n∑
i=1

τ
(m)
ik

[
− 1

2
log(2π)− 1

2
log(σ2

k)− 1

2
w

(m)
ik d2

ik

]
.

Q3(νk;Ψ (m)) =
n∑
i=1

τ
(m)
ik

[
− log Γ

(νk
2

)
+
(νk

2

)
log
(νk

2

)
−
(νk

2

)
w

(m)
ik +

(νk
2
− 1
)
e

(m)
1,ik

]
→ requires the following conditional expectations (analytic):

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

w
(m)
ik = EΨ (m) [Wi|yi, Zik = 1,xi, ri] ,

e
(m)
1,ik = EΨ (m) [log(Wi)|yi, Zik = 1,xi, ri] ·

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 80



The t mixture of experts model

MLE of the TMoE model: M-Step

M-Step 1 Calculate α(m+1) by maximizing Q1(α;Ψ (m)) w.r.t α. ⇒
Iteratively via IRLS (73) as for the mixture of SNMoE.

M-Step 2 Calculate θ
(m+1)
k by maximizing Q2(θk;Ψ

(m)) w.r.t θk

β
(m+1)
k =

[ n∑
i=1

τ
(m)
ik w

(m)
ik xix

T
i

]−1 n∑
i=1

τ
(q)
ik w

(m)
ik yixi,

σ2
k
(m+1)

=
1∑n

i=1 τ
(m)
ik

n∑
i=1

τ
(m)
ik w

(m)
ik

(
yi − βTk

(m+1)
xi

)2
.

M-Step 3 Calculate ν
(m+1)
k by maximizing Q3(νk;Ψ

(m)) w.r.t νk
⇒ iteratively solve the following equation in νk:

−ψ
(νk

2

)
+log

(νk
2

)
+1+

∑n
i=1 τ

(m)
ik

(
log(w

(m)
ik )− w(m)

ik

)∑n
i=1 τ

(m)
ik

+ψ
(ν(m)

k + 1

2

)
−log

(ν(m)
k + 1

2

)
=0.

This scalar non-linear equation can be solved with a root finding
algorithm, such as Brent’s method (Brent, 1973).
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The skew t mixture of experts model

The skew t mixture of experts model

The proposed skew t mixture of experts (STMoE) model is a MoE

model in which the expert components have a skew-t density

The skew t distribution Azzalini and Capitanio (2003), can be

characterized as follows. Let U be an univariate standard skew-normal

variable U ∼ SN(0, 1, λ). Then, let W ⊥ U ∼ Gamma(ν2 ,
ν
2 ). A

random variable Y having the following representation:

Y = µ+ σ
U√
W

follows the skew t distribution ST(µ, σ2, λ, ν) with location µ, scale

σ, skewness λ and degrees of freedom ν, whose density is defined by:

f(y;µ, σ2, λ, ν) =
2

σ
tν(dy) Tν+1

(
λ dy

√
ν + 1

ν + d2y

)
where dy = y−µ

σ and tν(.) and Tν(.) respectively denote the pdf and

the cdf of the standard t distribution with degrees of freedom ν.
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The skew t mixture of experts model

The skew t mixture of experts (STMoE) model

The proposed skew t mixture of experts (STMoE) model extends the

univariate skew t mixture model Lin et al. (2007a), to the MoE framework.

A K-component mixture of skew t experts (STMoE) is defined by:

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α) ST(y;µ(x;βk), σ2
k, λk, νk) ·

Parameter vector: Ψ = (αT1 , . . . ,α
T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T where

Ψk = (βTk , σ
2
k, λk, νk)T is the parameter vector for the kth skew t expert

component whose density is defined by

f
(
y|x;µ(x;βk), σ2, λ, ν

)
=

2

σ
tν(dy(x)) Tν+1

(
λ dy(x)

√
ν + 1

ν + d2
y(x)

)
When the robustness parameter {νk} → ∞, the STMoE reduces to the

SNMoE. If the skewness parameter {λk} = 0, the STMoE reduces to the

TMoE. Moreover, when {νk} → ∞ and {λk} = 0, it approaches the NMoE.

⇒ The STMoE is more flexible as it generalizes the previously described

models to accommodate situations with asymmetry, heavy tails, and outliers.
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The skew t mixture of experts model

Representation of the STMoE model

Stochastic representation Suppose that conditional on a Multinomial

categorical variable Zi, Ei and Wi are independent univariate random

variables such that Ei ∼ SN(λzi) and Wi ∼ Gamma(
νzi
2 ,

νzi
2 ), and xi and

ri are given covariates. A variable Yi having the following representation:

Yi = µ(xi;βzi) + σzi
Ei√
Wi

is said to follow the STMoE distribution

Hierarchical representation

Yi|ui, wi, Zik = 1,xi ∼ N

(
µ(xi;βk) + δk|ui|,

1− δ2
k

wi
σ2
k

)
,

Ui|wi, Zik = 1 ∼ N

(
0,
σ2
k

wi

)
,

Wi|Zik = 1 ∼ Gamma
(νk

2
,
νk
2

)
Zi|ri ∼ Mult

(
1;π1(ri;α), . . . , πK(ri;α)

)
.

The variables Ui and Wi are hidden in this hierarchical representation
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The skew t mixture of experts model

Identifiability of the STMoE model

Ordered, initialized, and irreducible STMoEs are identifiable:

Ordered implies that there exist a certain ordering relationship such that

(βT1 , σ
2
1 , λ1, ν1)T ≺ . . . ≺ (βTK , σ

2
K , λK , νK)T ;

initialized implies that wK is the null vector, as assumed in the model

irreducible implies that if k 6= k′, then one of the following conditions holds:

βk 6= βk′, σk 6= σk′, λk 6= λk′ or νk 6= νk′.

⇒ Then, we can establish the identifiability of ordered and initialized irreducible

STMoE models by applying Lemma 2 of Jiang and Tanner (1999), which requires

the validation of the following nondegeneracy condition:

The set {ST(y;µ(x;β1), σ2
1 , λ1, ν1), . . . ,ST(y;µ(x;β4K), σ2

4K , λ4K , ν4K)}
contains 4K linearly independent functions of y, for any 4K distinct

quadruplet (µ(x;βk), σ2
k, λk, νk) for k = 1, . . . , 4K.

Thus, via Lemma 2 of Jiang and Tanner (1999) we have any ordered and

initialized irreducible STMoE is identifiable.
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The skew t mixture of experts model

MLE via the ECM algorithm

Maximize the observed-data log-likelihood:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)ST(y;µ(xi;βk), σ2
k, λk, νk) ·

⇒ This is performed iteratively by a dedicated ECM algorithm.

The complete-data log-likelihood:

logLc(Ψ) = logL1c(α) +

K∑
k=1

[
logL2c(θk) + logL3c(νk)

]
; θk = (βTk , σ

2
k, λk)T

logL1c(α) =
n∑

i=1

K∑
k=1

Zik log πk(ri;α),

logL2c(θk) =
n∑

i=1

Zik

[
− log(2π)− log(σ

2
k)−

1

2
log(1− δ2k)−

wi d
2
ik

2(1− δ2
k

)
+
wi ui δk dik

(1− δ2
k

)σk
−

wi u
2
i

2(1− δ2
k

)σ2
k

]
,

logL3c(νk) =
n∑

i=1

Zik

[
− log Γ

(
νk

2

)
+

(
νk

2

)
log

(
νk

2

)
+

(
νk

2

)
log(wi)−

(
νk

2

)
wi

]
·
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The skew t mixture of experts model

MLE via the ECM algorithm: E-Step

E-Step Calculates the Q-function, that is the conditional expectation of

the complete-data log-likelihood , given the observed data {yi,xi, ri}ni=1

and a current parameter estimation Ψ (m) given by:

Q(Ψ ;Ψ (m)) = Q1(α;Ψ (m)) +

K∑
k=1

[
Q2(θk,Ψ

(m)) +Q3(νk,Ψ
(m))

]
,

where

Q1(α;Ψ
(m)

) =
n∑

i=1

K∑
k=1

τ
(m)
ik

log πk(ri;α),

Q2(θk;Ψ
(m)

) =
n∑

i=1

τ
(m)
ik

[
− log(2πσ

2
k)−

1

2
log(1− δ2k)−

w
(m)
ik

d2ik

2(1− δ2
k

)
+
δk dik e

(m)
1,ik

(1− δ2
k

)σk
−

e
(m)
2,ik

2(1− δ2
k

)σ2
k

]
,

Q3(νk;Ψ
(m)

) =

n∑
i=1

τ
(m)
ik

[
− log Γ

(
νk

2

)
+

(
νk

2

)
log

(
νk

2

)
−
(
νk

2

)
w

(m)
ik

+

(
νk

2

)
e
(m)
3,ik

]
.
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The skew t mixture of experts model

MLE via the ECM algorithm: E-Step

⇒ The E-Step requires the following conditional expectations:

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

w
(m)
ik = EΨ (m) [Wi|yi, Zik = 1,xi, ri] ,

e
(m)
1,ik = EΨ (m) [WiUi|yi, Zik = 1,xi, ri] ,

e
(m)
2,ik = EΨ (m)

[
WiU

2
i |yi, Zik = 1,xi, ri

]
,

e
(m)
3,ik = EΨ (m) [log(Wi)|yi, Zik = 1,xi, ri] ·

These conditional expectations are calculated analytically except e
(m)
3,ik for

which I adopted a one-step-late (OSL) approach as in Lee and McLachlan

(2014), rather than using a Monte Carlo approximation as in Lin et al.

(2007a).

I also mention that, for the multivariate skew t mixture models, recently Lee

and McLachlan (2015) presented a series-based truncation approach, which

exploits an exact representation of this conditional expectation and which

can also be used here.
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The skew t mixture of experts model

MLE via the ECM algorithm: M-Step

CM-Step 1 update the mixing parameters α(m+1) by maximizing the function

Q1(α;Ψ (m)) by using IRLS. Then, for k = 1 . . . ,K,

CM-Step 2 Update the regression params (β
T (m+1)
k , σ2

k
(m+1)

):

β
(m+1)
k =

[ n∑
i=1

τ
(q)
ik w

(m)
ik xix

T
i

]−1
n∑
i=1

τ
(q)
ik

(
w

(m)
ik yi − e(m)

1,ikδ
(m+1)
k

)
xi,

σ2
k

(m+1)
=

∑n
i=1 τ

(m)
ik

[
w

(m)
ik

(
yi − βTk

(m+1)
xi
)2

− 2δ
(m+1)
k e

(m)
1,ik(yi − βTk

(m+1)
xi) + e

(m)
2,ik

]
2
(

1− δ2
k

(m)
)∑n

i=1 τ
(m)
ik

·

CM-Step 3 Update the skewness parameters λk by solving the following equation:

δk(1− δ2k)
n∑

i=1

τ
(m)
ik

+ (1 + δ
2
k)

n∑
i=1

τ
(m)
ik

d
(m+1)
ik

e
(m)
1,ik

σ
(m+1)
k

− δk
n∑

i=1

τ
(m)
ik

[
w

(m)
ik

d
2
ik

(m+1)
+

e
(m)
2,ik

σ2
k
(m+1)

]
= 0 ·

CM-Step 4 Update the degree of freedom νk by solving of the following equation:

−ψ
(νk

2

)
+ log

(νk
2

)
+ 1 +

∑n
i=1 τ

(m)
ik

(
e

(m)
3,ik − w

(m)
ik

)
∑n
i=1 τ

(m)
ik

= 0.
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Prediction, clustering and model selection with the non-normal
MoE

Prediction, clustering and model selection

Prediction Predicted response: ŷ = EΨ̂ (Y |r,x) with

EΨ̂ (Y |r,x)=
K∑
k=1

πk(r; α̂n)EΨ̂ (Y |Z = k,x),

VΨ̂ (Y |r,x)=
K∑
k=1

πk(r; α̂n)
[

(EΨ̂ (Y |Z = k,x))2 + VΨ̂ (Y |Z = k,x)
]
−
[
EΨ̂ (Y |r,x)

]2
,

where EΨ̂ (Y |Z = k,x) and VΨ̂ (Y |Z = k,x) are respectively the

component-specific (expert) means and variances.

Clustering of regression data Calculate the cluster label as

ẑi = arg
K

max
k=1

E[Zi|ri,xi; Ψ̂ ] = arg
K

max
k=1

πk(r; Ψ̂)fk
(
yi|ri,xi; Ψ̂

)
∑K
k′=1 πk′(r; α̂)fk′

(
yi|ri,xi; Ψ̂k′

)
Model selection The value of (K, p) can be computed by using BIC, ICL

Number of free parameters:

ηΨ = K(p+ 4)− 2 for the NMoE model,

ηΨ = K(p+ 5)− 2 for both the SNMoE and the TMoE models,

ηΨ = K(p+ 6)− 2 for the STMoE model.
Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 90



An illustrative example

Illustation on Bishop’s data set
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Figure: Fitting the the non-normal mixture of experts models (SNMoE, TNMoE,

STMoE) to the toy data set analyzed in Bishop and Svensén (2003): n = 250

values of input variables xi generated uniformly in (0, 1) and output variables yi
generated as yi = xi + 0.3 sin(2πxi) + εi, with εi drawn from a zero mean

Normal distribution with standard deviation 0.05.
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An illustrative example

Experiments: Robustness of the NNMoE

Experimental protocol as in Nguyen and McLachlan (2014)

Model | Outliers 0% 1% 2% 3% 4% 5%

N
M

o
E

NMoE 0.0001783 0.001057 0.001241 0.003631 0.013257 0.028966

SNMoE 0.0001798 0.003479 0.004258 0.015288 0.022056 0.028967

TMoE 0.0001685 0.000566 0.000464 0.000221 0.000263 0.000045

STMoE 0.0002586 0.000741 0.000794 0.000696 0.000697 0.000626

S
N

M
o

E

NMoE 0.0000229 0.000403 0.004012 0.002793 0.018247 0.031673

SNMoE 0.0000228 0.000371 0.004010 0.002599 0.018247 0.031674

TMoE 0.0000325 0.000089 0.000130 0.000513 0.000108 0.000355

STMoE 0.0000562 0.000144 0.000022 0.000268 0.000152 0.001041

T
M

o
E

NMoE 0.0002579 0.0004660 0.002779 0.015692 0.005823 0.005419

SNMoE 0.0002587 0.0004659 0.006743 0.015686 0.005835 0.004813

TMoE 0.0002529 0.0002520 0.000144 0.000157 0.000488 0.000045

STMoE 0.0002473 0.0002451 0.000173 0.000176 0.000214 0.000291

S
T

M
o

E

NMoE 0.000710 0.0007238 0.001048 0.006066 0.012457 0.031644

SNMoE 0.000713 0.0009550 0.001045 0.006064 0.012456 0.031644

TMoE 0.000279 0.0003808 0.000371 0.000609 0.000651 0.000609

STMoE 0.000280 0.0001865 0.000447 0.000600 0.000509 0.000602

Table: MSE between the estimated mean function and the true one

When there is no outliers (c = 0%), the error of the TMoE is less than
those of the other models, for the four situations, that is including the
case where the data are not generated according to it, which is somewhat
surprising. This includes the case where the data are generated according
to the NMoE model, for which the TMoE error is slightly less than the one
of the NMoE model. Then, it can be seen that when there is outliers, the
TMoE model outperforms the other models for almost all the situations,
except the one in which the data are generated according to the STMoE
model. When the data do not contain outliers and are generated from the
STMoE, this one indeed outperforms the NMoE and SNMoE models. For
the situation when there is no outliers and the data are generated
according to the TMoE or the STMoE, these two models may provide
quasi-identical results. In the case of presence of outliers in data generated
from the STMoE, this one outperforms the NMoE and SNMoE models for
all the situations, and outperforms the TMoE for the majority of
situations, namely when the number of the outliers is more than 2%. Also,
for all the situations with outliers, as expected, the TMoE and STMoE
models always provide the best results. These two models are indeed much
more robust to outliers compared to the normal and skew-normal ones
because the expert components in these two models follow a robust
distribution, that is the t distribution for the TMoE, and the skew t
distribution for the STMoE. The NMoE and SNMoE are sensitive to
outliers. When there is outliers, the SNMoE behavior is comparable to the
one of the NMoE. But the SNMoE is more adapted to skewed data
compared to the standard NMoE model. However, when the number of
outliers is increasing, the increase in the error of the NMoE and SNMoE
model is more pronounced compared to the one of the TMoE and STMoE
models. The error for both the TMoE and STMoE may indeed slightly
increase, remain stable or even decrease in some situations. This supports
the expected robustness of the TMoE and STMoE models.
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An illustrative example
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An illustrative example

Robustness of the NNMoE
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Figure: Fitted MoE to n = 500 observations generated according to the NMoE

with 5% of outliers (x; y = −2): NMoE fit (top), TMoE fit (bottom).
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An illustrative example

Robustness of the NNMoE
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Figure: Fitted MoE to n = 500 observations generated according to the NMoE

with 5% of outliers (x; y = −2): NMoE fit (top), STMoE fit (bottom).
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An illustrative example

Experiments

Application to two real-world data sets

Tone perception data set Recently studied by Bai et al. (2012) and Song

et al. (2014) by using robust regression mixture models based on,

respectively, the t distribution and the Laplace distribution.

To apply the proposed MoE models, we set the response yi(i = 1, . . . , 150)

as the “strech ratio” variables and the covariates xi = ri = (1, xi)
T where

xi is the “tuned” variable of the ith observation.

Temperature Anomaly Data

The data consist of n = 135 yearly measurements of the global annual

temperature anomalies (in degrees C) computed using data from land

meteorological stations for the period of 1882− 2012.

The response yi(i = 1, . . . , 135) is set as the temperature anomalies and the

covariates xi = ri = (1, xi)
T where xi is the year of the ith observation.

These data have been analyzed earlier by Hansen et al. (1999, 2001) and

recently by Nguyen and McLachlan (2014) by using the Laplace mixture of

linear experts (LMoLE).
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An illustrative example
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Figure: Fitting the MoLE to the tone data set studied by Bai et al. (2012) and

Song et al. (2014) by using robust regression mixture models based on,

respectively, the t distribution and the Laplace distribution: n = 150 pairs of

“tuned” predictors (x), and their corresponding “strech ratio” responses (y).
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An illustrative example

Model selection

NMoE SNMoE TMoE STMoE

K BIC AIC ICL BIC AIC ICL BIC AIC ICL BIC AIC ICL

1 1.8662 6.3821 1.8662 -0.6391 5.3821 -0.6391 71.3931 77.4143 71.3931 69.5326 77.0592 69.5326

2 122.8050 134.8476 107.3840 117.7939 132.8471 102.4049 204.8241 219.8773 186.8415 92.4352 110.4990 82.4552

3 118.1939 137.7630 76.5249 122.8725 146.9576 98.0442 199.4030 223.4880 183.0389 77.9753 106.5764 52.5642

4 121.7031 148.7989 94.4606 109.5917 142.7087 97.6108 201.8046 234.9216 187.7673 77.7092 116.8474 56.3654

5 141.6961 176.3184 123.6550 107.2795 149.4284 96.6832 187.8652 230.0141 164.9629 79.0439 128.7194 67.7485

Table: Choosing the number of experts K for the original tone perception data.

Model’s Robustness

I also examined the sensitivity of the MoE models to outliers based on this

real data set.

the same scenario used in Bai et al. (2012) and Song et al. (2014) (the last

and more difficult scenario) by adding 10 identical pairs (0, 4) to the original

data set as outliers in the y-direction, considered as high leverage outliers.
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An illustrative example

Robustness to outliers

⇒ the normal and the skew-normal mixture of experts provide almost

identical fits and are sensitive to outliers.

However, in both cases, compared to the normal regression mixture

result in Bai et al. (2012), and the Laplace regression mixture and the

t regression mixture results in Song et al. (2014), the fitted NMoE

and SNMoE model are affected less severely by the outliers.

This may be attributed to the fact that the mixing proportions here

are depending on the predictors, which is not the case in these

regression mixture models, namely the ones of Bai et al. (2012), and

Song et al. (2014).

The TMoE and the STMoE provide robust fits, which are

quasi-identical to the fit obtained on the original data without outliers.

Moreover, I notice that, as showed in Song et al. (2014), for this

situation with outliers, the t mixture of regressions fails; The fit is

affected severely by the outliers.
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An illustrative example
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Figure: Fitting MoLE to the tone data set with ten added outliers (0, 4).
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An illustrative example
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Figure: Fitting the MoLE models to the temperature anomalies data set.
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An illustrative example

Both the TMoE and STMoE fits provide a degrees of freedom more

than 17, which tends to approach a normal distribution.

On the other hand, the regression coefficients are also similar to those

found by Nguyen and McLachlan (2014) who used a Laplace mixture

of linear experts.

Model selection : Except the result provided by AIC for the NMoE

model which provides overestimates the number of components, all

the others results provide evidence for two components in the data.

NMoE SNMoE TMoE STMoE

K BIC AIC ICL BIC AIC ICL BIC AIC ICL BIC AIC ICL

1 46.0623 50.4202 46.0623 43.6096 49.4202 43.6096 43.5521 49.3627 43.5521 40.9715 48.2347 40.9715

2 79.9163 91.5374 79.6241 75.0116 89.5380 74.7395 74.7960 89.3224 74.5279 69.6382 87.0698 69.3416

3 71.3963 90.2806 58.4874 63.9254 87.1676 50.8704 63.9709 87.2131 47.3643 54.1267 81.7268 30.6556

4 66.7276 92.8751 54.7524 55.4731 87.4312 41.1699 56.8410 88.7990 45.1251 42.3087 80.0773 20.4948

5 59.5100 92.9206 51.2429 45.3469 86.0207 41.0906 43.7767 84.4505 29.3881 28.0371 75.9742 -8.8817

Table: Choosing the number of expert components K for the temperature

anomalies data by using the information criteria BIC, AIC, and ICL. Underlined

value indicates the highest value for each criterion.
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Conclusion

Summary

Proposed non-normal MoE models, which generalize the normal MoE.

They are based on the skew-normal, t and skew t distribution and are

respectively the SNMoE, TMoE, and STMoE.

The SNMoE model is suggested for non-symmetric data, the TMoE

for data with possibly outliers and heavy tail, and the STMoE is

suggested for both possibly non-symmetric, heavy tailed and noisy

data.

Here I only considered the MoE in their standard (non-hierarchical)

version: One interesting future direction is therefore to extend the

proposed models to the hierarchical mixture of experts framework

(Jordan and Jacobs, 1994).

Furthermore, a natural future extension of this work is to consider the

case of MoE for multiple regression on multivariate data rather than

simple regression on univariate data.
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Conclusion

Conclusion

The previous chapters presented my research during the last five years

as well as my ongoing research on the problems of statistical learning

of flexible models for complex data analysis.

This involved research in statistics in the related fields of

classification, high dimensional and functional data analysis,

statistical signal processing, machine learning and pattern recognition,

and in the field of statistical inference.

The focus in the latter field has been on the methodology and

applications of latent data models, particularly mixture models, and

on maximum likelihood estimation via EM algorithms as well as

maximum a posteriori estimation via Bayesian sampling, including in

the Bayesian non-parametric paradigm.

A particular attention was given to the statistical methodology and its

computational aspects, which constitute a common theme of my

research.
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Perspectives

Other work and Ongoing Research

Other finished work

Latent data models for functional data analysis [J-2][J-4][J-5]

Bayesian non-parametric parsimonious clustering of multivariate data:

PhD thesis of Marius Bartcus (2012-2015) a

Bayesian regularization of spatial splines regressions [J-11] (2014 - )

a
M. Bartcus. Bayesian non-parametric parsimonious mixtures for model-based clustering. Ph.D. thesis,

Université de Toulon, Laboratoire des Sciences de l’Information et des Systèmes (LSIS), October 2015

Ongoing Research

Advanced mixtures for complex data (My ongoing CNRS research

leave project)

LEarning from biG cOmplex FunctIonal daTa - LegoFit (2015 - an

ANR proposal, PI with LIPN, IFSTTAR, LIPADE and AIRBUS)

Model-based (co)-clustering for high-dimensional (functional) data
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Perspectives

Perspectives

Perspectives

Non-normal mixture modeling

Feature selection in model-based clustering

Bayesian latent variable models for sparse representations

Unsupervised learning of feature hierarchies: Deep learning

Patel et al. (2015), introduced a probabilistic theory of deep learning

that seems to answer some key questions for deep learning from a

probabilistic point of view.
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F. Chamroukhi. Probabilistic Learning From Longitudinal Data: Background, Novel theoretical models, Classifiers and

Algorithms. Lap Lambert Academic Publishing, 2011. ISBN 978-3844311372.

F. Chamroukhi. Learning probabilistic latent process models from temporal data. VIIth International Summer School ERMITES

2012 on Representations and Decisions in Cognitive Vision, september 2012.

F. Chamroukhi. Model-based cluster and discriminant analysis for functional data. ERCIM 2014 : The 7th International

Conference of the European Research Consortium for Informatics and Mathematics on Computational and Methodological

Statistics, December 2014a. Pisa, Italy.

Faicel Chamroukhi Statistical learning of latent data models for complex data analysis 111



Journal papers

References II

F. Chamroukhi. Mixture models for cluster analysis: from model-based inference to bayesian non-parametrics. uLearnBio

workshop of the International Conference on Machine Learning (ICML), June 2014b.

F. Chamroukhi. Bayesian mixtures of spatial spline regressions. arXiv:1508.00635, Aug 2015a.

F. Chamroukhi. Mixture of hidden markov model regressions for functional data clustering and segmentation. Neural Networks,

2015b. In preparation.

F. Chamroukhi. Non-normal mixtures of experts. arXiv:1506.06707, July 2015c. 61 pages.

F. Chamroukhi. Piecewise regression mixture for simultaneous curve clustering and optimal segmentation. Journal of

Classification - Springer, 2015d. Accepted.

F. Chamroukhi. Unsupervised learning of regression mixture models with unknown number of components. Journal of Statistical

Computation and Simulation, 2015e. doi: 10.1080/00949655.2015.1109096. In Press.

F. Chamroukhi. Robust mixture of experts modeling using the skew-t distribution. 2015f. submitted.

F. Chamroukhi. Robust mixture of experts modeling using the t-distribution. 2015g. submitted.

F. Chamroukhi. Robust non-normal mixtures of experts. ERCIM 2015 : The 8th International Conference of the European

Research Consortium for Informatics and Mathematics on Computational and Methodological Statistics, December 2015h.

London, UK.

F. Chamroukhi and H. Glotin. Unsupervised learning from big bioacoustic data (uLearnBio). Proceedings of the uLearnBio

workshop of the International Conference on Machine Learning (ICML), 2014. ISBN 979-10-90821-06-4.
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