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Research interests
m The area of statistical learning and analysis of complex data.
m Acquiring knowledge from such data:
— exploratory analysis

— decisional analysis: make decision and prediction for future data

Scientific context
m density estimation
B regression
m classification

m clustering/segmentation

Goals and tools

m define generative probabilistic models

B propose estimation procedures
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Mixture modeling framework

Mixture modeling framework

m Mixture density: f(z) = Zszl P(z=k)f(z|z=k) = Zszl 7 [ ()

m Generative model

z o~ M(Lm,...
zlz ~ f(z]2)

m Fitting such models is in the core of the analysis task
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Outline

Mixture models for temporal data segmentation
Mixture models for functional data analysis

Bayesian (non-)parametric mixtures for spatial and multivariate data

FAI1CEL CHAMROUKHI Statistical learning of generative models for complex data analysis



Temporal data

Temporal data with regime changes
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Power (Watt)
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Railway data Human activity data

m Data with regime changes over time
m Abrupt and/or smooth regime changes

m Multidimensional temporal data

Objectives

Temporal data modeling and segmentation J
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Outline

Mixture models for temporal data segmentation
m Regression with hidden logistic process
m Multiple hidden process regression
m Non-normal mixtures of experts
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Mixture models for temporal data segmentation

Yy = (y1,...,Yn) a time series of n univariate observations y; € R observed at the
time points t = (t1,...,tn)

Times series segmentation context
m Time series segmentation is a popular problem with a broad literature

m Common problem for different communities, including statistics, detection,
signal processing, machine learning, finance

m The observed time series is generated by an underlying process
— segmentation = recovering the parameters the process’ states.

m Conventional solutions are subject to limitations in the control of the
transitions between these states

B — Propose generative latent data modeling for segmentation and
approximation

m < segmentation = inferring the model parameters and the underling process
v
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Regression with hidden logistic process

Let y = (y1,...,Yn) be a time series of n univariate observations y; € R
observed at the time points t = (¢1,...,t,) governed by K regimes.

The Regression model with Hidden Logistic Process (RHLP) [J-1]

yi = BLaito,a ; &~N(01), (i=1...,n)
Zi ~ M(Lm(tsw),... mk(ti;w))
Polynomial segments BzTi:ci with z; = (1,¢;,...,t)T with logistic probabilities
t;
mutisw) = B(Z: = kltisw) = e (ks £ ko)

Zle exp (wert; + weo)

=

flyilti; 0) = Zﬂk(ti;w)/\/’(yi;ﬂfmugi)

k=1

m Both the mixing proportions and the component parameters are time-varying
v
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Model properties

m Modeling with the logistic distribution allows activating simultaneously and
preferentially several regimes during time

. __exp (Ar(titw))
Tt W) = S o +an))

1 1

—A, =5
08 A, =-10 08
=2, =-50
T 08 F 0§
& 0.4 €04
=2
0.2 0.2
% 1 2 4 5 %
Time

= The parameter wy controls the quality of transitions between regimes
= The parameter wy is related to the transition time point
m Ensure time series segmentation into contiguous segments
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EM-RHLP

Parameter estimation via a the EM algorithm: EM-RHLP
m Parameter estimation via a the EM algorithm (EM-RHLP)

M-Step: includes a weighted logistic regression problem < IRLS (and
weighted polynomial regressions)

m EM-RHLP algorithm complexity: O(IgwIirisK>p®n) (more advantageous
than dynamic programming).

Time series approximation and segmentation

. o TF
Approximation: a curve prototype §; = E[y;|t;; 0] = Z,If:l mr (ti; W) B x5

— The RHLP can be used as nonlinear regression model y; = f(¢;;0) + €;
by covering functions of the form f(¢;;0) = Zszl ety w)Bhx;  [J-3]

Curve segmentation:
Z; = arg maxi <p<k Elz;|t;; W] = arg maxi<p< i 7k (ti; W)

Model selection: Application of BIC, ICL (vg = K(p +4) —2.)
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Application to real data
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Joint segmentation of multivariate time series

Multiple hidden process regression
m Data: (y,,...,y,,) a time series of n multidimensional observations

Y, (yfl), cee yf‘”) € R? observed at instants t = (t1,...,t,).
m Model
WO = AT, oD,
WO = AT o

Vectorial form: y, =Bl zi +e; ; e ~N(0,%.), (i=1,...,n)

m The latent process z = (z1,. .., z) simultaneously governs the univariate time
series components

PhD of Dorra Trabelsi 2010-20132

a . e B 5 . By TR B . . B,
D. Trabelsi. Contribution a la reconnaissance non-intrusive d’activités humaines. Ph.D. thesis, Université
Paris-Est Créteil, Laboratoire Images, Signaux et Systemes Intelligents (LiSSi), June 2013

< Multiple regression with hidden logistic process: Multiple RHLP [J-6]
— Multiple Hidden Markov model regression (MHMMR) [J-7]
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Multiple hidden Markov model regression

m MHMMR: Estimation by the EM algorithm (as for HMMs)

— Solve multiple regression problems

Application to human activity time series
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Figure: MHMMR Segmentation of acceleration data issued from three body-worn sensors (Data
acquired at the LISSI Lab/University of Paris 12)
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Multiple regression with hidden logistic process

m MRHLP: Estimation by the EM algorithm (as for the RHLP)

— Solve multiple regression problems

Application to human activity time series

Problem: Activity recognition from multivariate acceleration time series
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Figure: MRHLP segmentation of acceleration data issued from three body-worn sensors (Data
acquired at the LISSI Lab/University of Paris 12)
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Data with atypical features

NMoE TMoE STMoE

© Cluster 1 © Gluster 1 o Cluster 1

Figure: Fitting MoLE to the tone data set with ten outliers (0,4).

m Data with possible atypical observations

m Data with possibly asymmetric and heavy-tailed distributions

Objectives
m Derive robust models to fit at best the data

m Deal with other possible features like skewness, heavy tails
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Mixture of Experts (MoE) modeling framework

m Observed pairs of data (x,y) where y € R is the response for some covariate
x € RP governed by a hidden categorical random variable Z

m Mixture of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs, 1994) :

K
fyle; @) = > m(ria) fi(yle; @)
k=1 Y Ny
Gating network Experts

. . . q. . . exp (afr)
m Gating function of some predictors 7 € R?: 7y (7; o) = —k—zK op (@T7)
£=1 £

m MoE for regression usually use normal experts fi(y|z; @})

Objectives
m Overcome (well-known) limitations of modeling with the normal distribution.

— Not adapted For a set of data containing a group or groups of
observations with asymmetric behavior, heavy tails or atypical observations
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Non-normal mixtures of experts

Non-normal mixtures of experts (NNMoE)

the skew-normal MoE (SNMoE) (skewness) [J-13]
the ¢ MoE (TMoE) (Robustness, heavy tails) [J-14]
the skew-t MoE (STMoE) (skewness, robustness, heavy tails) [J-15]

Non-normal mixtures

o=

Mature donsty

g T
apsoraton

7w = [0.4,0.6], up, = [—1,2]; o = [1,1]; v, = [3,7]; A\ = [14, —12];
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The skew ¢ mixture of experts (STMoE) model

m A K-component mixture of skew ¢ experts (STMoE) is defined by:

K

flylr, @ ®) = > m(r;a) ST(y: p(@: By), o7, Aiy 12)
k=1

m kth expert: has skew ¢ distribution (Azzalini and Capitanio, 2003):

F(ylm; s By), 0% A v) = % iy () Tons </\ @ ’/‘I;‘%}m))

Model characteristics
— For {v;} — o0, the STMoE reduces to the SNMoE
— For {\;} — 0, the STMOoE reduces to the TMoE.
— For {v;,} — oo and {\;} — 0, it approaches the NMoE.

— The STMOoE is flexible as it generalizes the previously described models
to accommodate situations with asymmetry, heavy tails, and outliers.
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Parameter estimation via the ECM algorithm

E-Step: requires the following conditional expectations:

Y = Egom [Zulyi, i, mi],

wz(I::n) = Egwm Wilyi, Zi = 1,24, 7],

eg?,l = Egm Wililyi, Zik = 1,24, 74] ,

eé’f?;l = Egmm [WiUi2|yi7Zik =1,xi, 7,

egﬁi = Egon log(Wi)lyi, Zik = 1, @, 74] -
(m)

— Calculated analytically except e; ;; < | adopted a one-step-late (OSL)
approach as in Lee and McLachlan (2014)

— Note that Lee and McLachlan (2015) presented an exact series-based
truncation approach for the multivariate skew ¢ mixture models

CM-Steps: Include weighted logistic regressions and linear regressions
— Predicted response: § = Eg (Y|r, ) with
Eg(Y|r, @) = 300, mi(r; én)Eg (Y|Z = k)
< Predicted class: 2 = argmaxi_; E[Z|r, x; @]

< Model selection: Choose (K, p) using BIC or ICL
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Tone perception data set

m Recently studied by Bai et al. (2012) and Song et al. (2014) by using, respectively,
robust ¢ regression mixture and Laplace regression mixture
m Data consist of n = 150 pairs of “tuned” variables, considered here as predictors

(), and their corresponding “strech ratio” variables considered as responses (y).
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Robustness of the NNMoE

Figure: Fitted MoE to n = 500 observations generated according to the NMoE with 5% of
outliers (z;y = —2): NMoE fit (top), TMoE fit (middle), STMoE fit (bottom).
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Tone perception data set (noisy case)

m Consider the same scenario used in Bai et al. (2012) and Song et al. (2014) (the

last and more difficult scenario) by adding 10 identical pairs (0,4)

FaiceL

SNMoE

Expert mean 2

NMoE
© Cluster 1 © Cluster 1
© Cluster 2 © Cluster 2
Expert mean 1
35| Expert mean 2

1.5 o 1.5 o
o 05 1 5 25 o 05 1 s B 25 E
TMoE STMoE
© Cluster 1 © Cluster 1
© Cluster2 © Cluster2
Expert mean 1 Expert mean 1
3.5 —— Expert mean 2 3.5 —— Expert mean 2

Figure: Fitting MoLE to the tone data set with ten added outliers (0, 4).
< In this noisy case the ¢ mixture of regressions fails (is affected severely by the
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Temporal railway data segmentation

m n = 562 temporal data
m 30 added artificial outliers

power (W)
power (W)

o.of 1
o.8F 1 0.8 1
0.7[ 1 0.7f 1

= =

S o6l 1 Boset 1

2

H H

= osf {1 2ost ]

= =

Joaf {1 Boaf 1
0.3F 1 0.3F 1
0.2[ 1 0.2 1
o.1r 1 0.1 1

o

o 100 200 300 400 500 600 o 100 200 300 400 500 600
t t




Outline

Mixture models for functional data analysis

Mixture of piecewise regressions

Mixture of hidden Markov model regressions
Mixture of hidden logistic process regressions
Functional discriminant analysis

Regularized regression mixtures for functional data
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Functional data analysis context

Many curves to analyze

B ) O g
Time (Second)

Railway switch curves  Yeast cell cycle curves

Phonemes curves Satellite waveforms
Objectives
m Curve clustering/classification (functional data analysis framework)

m Deal with the problem of regime changes — Curve segmentation
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Functional data analysis context

Data
m The individuals are entire functions (e.g., curves, surfaces)
m A set of n univariate curves ((z1,Y1),.- -, (Zn,Y,,)

m (x;,y,;) consists of m; observations y, = (¥i1, . .., Yim,;) observed at the
independent covariates, (e.g., time ¢ in time series), (zi1,. .., Tim,)

Objectives: exploratory or decisional

Unsupervised classification (clustering, segmentation) of functional data,
particularly curves with regime changes: [J-4] [J-9], [C-11] [J-16]

Discriminant analysis of functional data: [J-2], [J-5]

Functional data clustering/classification tools
m A broad literature (Kmeans-type, Model-based, etc)

= Mixture-model based cluster and discriminant analyzes
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Mixture modeling framework for functional data

m The functional mixture model:

K
fyle; ) = > afr(yle; @)

k=1

m fi(y|x) are tailored to functional data: can be polynomial (B-)spline
regression, regression using wavelet bases etc, or Gaussian process
regression, functional PCA

< more tailored to approximate smooth functions

— do not account for the segmentation

Here fi.(y|x) itself exhibits a clustering property due to regimes:
Riecewise regression model (PWR)
Regression model with a hidden Markov process (HMMR)
Regression model with hidden logistic process (RHLP)
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Piecewise regression mixture model (PWRM) [J-9]

m A probabilistic version of the K-means-like approach of (Hébrail et al., 2010)
K

Ry,
fles®) =Y o ][ [ N Bi@i, ot

k=1 r=1j€lg,

PWR
Iy = (&kr, Ek,r+1] are the element indexes of segment r for component &

m — Simultaneously accounts for curve clustering and segmentation

Parameter estimation
Maximum likelihood estimation: EM-PWRM

Maximum classification likelihood estimation: CEM-PWRM
< a generalization of the K-means-like algorithm of Hébrail et al. (2010):

M-step: includes wighted piecewise regression problems — dynamic
programming

Complexity in O(Igm K Rnm?p?): Significant computational load for very
large m
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Application to switch operation curves

Data set: n = 146 real curves of m = 511 observations.
Each curve is composed of R = 6 electromechanical phases (regimes)

CEM-PWRM partition

Power (Wat)
Power (Watt)

2 3 2 3
“Time (Second) Time (Second)

Cluster 1 Cluster 2

o 1 4 5 0 1 4 5

2 3 2 3
Time (Second) Time (Second)

EM-GMM  EM-PRM  EM-PSRM  K-means-like =~ CEM-PWRM

721.46 738.31 734.33 704.64 703.18
Table: Estimated intra-cluster inertia for the switch curves.
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Application to Topex/Poseidon satellite data

The Topex/Poseidon radar satellite datal contains n = 472 waveforms of
the measured echoes, sampled at m = 70 (number of echoes)

We considered the same number of clusters (twenty) and a piecewise linear
approximation of four segments per cluster as in Hébrail et al. (2010).

Original data
250 T T

200f 1
-
150 -

100E

50

10 20 30 40 50 60 70

!Satellite data are available at
http://wuw.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html
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CEM-PWRM clustering of the satellite data

.»»w"”‘m ' /| 1‘. BRI H A
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Mixture of hidden logistic process regressions [J-4]

m The mixture of regressions with hidden logistic processes (MixRHLP):

my
T 2
f(y;|lzi; ¥ Zaknzﬂlm Tj; W) (yij;/@kra:jvakr)

= j=1r=1

RHLP
exp (Wiro + Wer15)

Ter (055 We) = P(Hij = r|Z; = k253 wi) = =5 )
r—1 €XP (wkT’O + wkr’lmj)

m Two types of component memberships:
— cluster memberships (global) Z;, = 1iff Z, = k
— regime memberships for a given cluster (local): H;;» = 1iff H;; =r
MixRHLP deals better with the quality of regime changes

m Parameter estimation via the EM algorithm: EM-MixRHLP

m EM-MixRHLP has complexity in O(IemIiris K R3*nmp3) (K-means type for
piecewise regression is in O(IxmK Rnm?p3) — EM-MixRHLP is
computationally attractive for large values of m and moderate values of R.

FaiceL CHAMROUKHI | Statistical learning of generative models for complex data analysis



Functional discriminant analysis

Supervised classification context

m Data: a training set of labeled functions ((z1,y1,¢1),. ., (®n,Yn,¢.))
where ¢; € {1,...,G} is the class label of the ith curve

m Problem: predict the class label ¢; for a new unlabeled function (x;,y,)

Tool: Discriminant analysis

Use the Bayes' allocation rule

& = arg max P(C; = g)f(y;|zs; ¥y)
15956 35 P(Ci = g') f(y;]i; @)

based on a generative model f(y;|x;;¥,) for each group g

m Homogeneous classes: Functional Linear Discriminant Analysis [J-2]

m Dispersed classes: Functional Mixture Discriminant Analysis [J-5]
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Applications to switch curves

‘Sub-Class 1 of Class 1 ‘Sub-Class 2 of Class 1 Class 2

B 3 O B 3 O
Time (Second) Time (Second)

02 02 02

B 3 0 B T 2 3 0 B 0
Timo (Second) Timo (Second)

B 3 0
Time (Second)

B 3 0
Timo (Second)

Approach Classification error rate (%) Intra-class inertia
FLDA-PR 11.5 10.7350 x 109
FLDA-SR 9.53 9.4503 x 109
FLDA-RHLP 8.62 8.7633 x 10°
FMDA-PRM 9.02 7.9450 x 109
FMDA-SRM 8.50 5.8312 x 109
FMDA-MixRHLP 6.25 3.2012 x 10°
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Regularized regression mixtures

The finite Gaussian regression mixture model

K

fylzi;0) = ZWkN(yﬁXiﬁkaU?c'mi)

k=1

m The parameter @ is usually estimated by ML: log L(8) = Y., log f(y;|x:; 0)

m the EM algorithm is the usual tool

< requires careful initialization (Biernacki et al., 2003)

< requires the number of components K to be supplied by the user (or BIC, ICL
etc)

Idea of the proposed approach [J-8]

< A fully unsupervised fitting of regression mixtures
— EM-like algorithm which is robust with regard initialization and infers the number of
components from the data
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Regularized regression mixtures [J-8]

m Penalized log-likelihood criterion:

JON®) = logL(¥)—AH(z), A>0
n K K
= ZIOgZﬂ'kN(Yi;XiﬂkaU]%Im)+)\nz7rk10g7rk:
=1 k=1 =1

m H(Z) = —E[logP(Z)]: - entropy accounting for model complexity

m A > 0 is a smoothing parameter

EM-like algorithm for unsupervised learning [J-8]

initialization : K = n; w,(co) = K}O), ( (0),0,3(0)) polynomial regression
E-step: Posterior component memberships T(Q) P(Z; = k|:cz,yl,¢)

M Step' Tr](gq+1) — n ;,n 1 z(lg) + )\7-‘-((1) <10g7T Zh 17Thq) lOg 7T}<q)>

(@

-1 2
+1 n n 2(g+1 1 B lyi —X;Bgll
1856‘1 ):[Zz 1 L(S)XTX :| Zz 1 L(IiI)XT Uk?(q ): lmg yl (Z) .

The penalization coefficient X is set in an adaptive way

— However, does not guarantee the ascent property of the objective function
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Phonemes data

Phonemes data set used in Ferraty and Vieu (2003)?
1000 log-periodograms (200 per cluster)

phonemes aa, ao, dcl, iy sh aa

log-periodograms

00 120 140 20 40 00 120 140

)
requencies

log-periodograms

20 0 W 00 120 140 20 40 00 120 140

0 80 O]
requencies frequencies

Figure: Original phoneme data and curves of the five classes: "ao”, "aa", "yi", "dcl”, "sh”.

?Data from http://www.math.univ-toulouse.fr/staph/npfda/
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EM-like clustering results for Phonemes

Phonemes data set used in Ferraty and Vieu (2003)°
1000 log-periodograms (200 per cluster)

phonemes aa, ao, dol, iy sh

Robust EM-MixReq Clustering - teration 31; K - 5

Robust EM-MixReg clustering : eration 31; K = 5

H

20

Robust EM-MixRog clustering : teration 31; K =5

) 20 140
requencies

EM-PRM EM-SRM EM-bSRM
Estimated K 5 5 5
Misc. error rate  14.29 % 14.09 % 142 %
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Yeast cell cycle data

m Time course Gene expression data as in Yeung et al. (2001) *

m 384 genes expression levels over 17 time points.

Transcrpt Levels

& 10 5 10 810
Time Time Time

Figure: The five “actual” clusters of the used yeast cell cycle data according to Yeung et al.
(2001).

b
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EM-like clustering results for yeast cell cycle data

m Time course Gene expression data as in Yeung et al. (2001)

m 384 genes expression levels over 17 time points.

Robust EM-MixReg clustering : teration 84; K - 5 Fobust EM-MixReg clustering : teration 84; K = 5

Transcript Levels

3

E
Time.

Robust EM-MixReg clustering : teration 84; K = 5

Figure: EM)like clustering results with the bSRM model.

Rand index: 0.7914 which indicates that the partition is quite well defined.
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Outline

Bayesian (non-)parametric mixtures for spatial and multivariate data
m Bayesian spatial spline regression with mixed-effects
m Bayesian mixture of spatial spline regressions with mixed-effects
m Dirichlet Process Parsimonious Mixtures for multivariate data
clustering
m Application to whale song decomposition
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Bayesian spatial spline regression with mixed-effects

m Data: ((z1,91),---,(®n,y,)) a sample of n surfaces y;, = (Yi1, - - -, Yim, )"
and their spatial coordinates =; = (%411, Zi12); - - - » (Tim; 15 Tim,2)) T

m Propose regression and regression mixtures, with three additional features:

Include random effects
Models for spatial functional data

A full Bayesian inference

Bayesian spatial spline regression with mixed-effects

Y, = Sl(,@—‘rbl) +e; e N./\/'(O,O'lei), (’L = 1,...,7’L)

m 3: fixed-effects regression coefficients

m b;: random subject-specific regression coefficients b; 1 e; ~ N (0, &%1,,,)

m S, is a spatial design matrix.
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m S; constructed from the Nodal basis functions (NBF) (Malfait and Ramsay, 2003)
used in (Ramsay et al., 2011; Sangalli et al., 2013; Nguyen et al., 2014)

m NBFs extend the univariate B-spline bases to bivariate surfaces.

s(x1;c1) s(e1;c2) -+ s(wi;cq)

s(x2;c1) s(x2;c2) -+ s(w2;cq)
,L' =

$(®m;;c1)  S(®m;;c2) oo s(Tm,;Cq)

d: number of basis functions d
@;; = (2451, Tij2) the two spatial coordinates of y;;
c = (c1,c2) is a node center parameter, with v/h shape parameters §; and d;

x2 -1 X1

Figure: Nodal basis function s(z, ¢, d1,02), where ¢ = (0,0) and 61 = 2 = 1.
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Bayesian spatial spline regression with mixed-effects

Under the BSRR model, he density of the observation y; is given by
F(yilSi: ) = N(y;:8:8,6°8:87 + 0°Im,).

Conjugate prior distributions

IB ~ N(N07EO)
bil¢®  ~  N(04,&La)
§2 o Ig(ao,bo)
o? ~  ZG(go,ho)

Bayesian inference using Gibbs sampling
m Sample from the full conditional posterior distributions (analytic)
Bl... ~ N(wo, Vo

bil... ~ N(vi,Vi1

s R ZG(g1,h1

... ~ IG(a1,b

~

NI
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lllustration on simulated surfaces’ approximation

sin(\/1 + 2% + 23)
V1422 + 23

A sample of 100 simulated noisy surfaces from pu(x) =

The simulated data include mixed effects.

True mean surface Simulated surface y Estimated mean surface

\ 1
\»’v‘*. 0.4 2 \“, N ' § RO 0.4
= L i s~ A I‘ AT e £ vy s
0 7T .A“‘\'.(g’l(l{\\\\&f » " ! :« \‘\‘\\)ﬂt& v‘@\\‘l \VJ“&Q‘&«\ o "\“\g’(‘\“\\w ZT
x o] N Lyt BER

Figure: True mean surface (left), an example of noisy surface (middle), A BSSR fit ji(xz) = S;8
from 100 surfaces using 15 x 15 NBFs (right).

Empirical sum of squared error: SSE = 3770 (u;(x) — fij(x))? (m = 441 here):
0.0865 (a very reasonable fit)
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Bayesian mixture of spatial spline regressions

Data: A sample of n surfaces (yq,...,¥,,) and their spatial covariates
(S1,...,S,) issued from K sub-populations

m Bayesian mixture of spatial spline regression models with mixed-effects
(BMSSR):

y1|sl7!p Zﬂ-k y’L’ IBk+b'Lk) UkImt)

— Useful for density estimation and model-based clustering of
heterogeneous surfaces

Hierarchical prior from for the BMSSR

21y ~ D(ay,...,0K)
B, ~  N(po,%o)
birléf  ~  N(04,&714)

i ~  ZG(ao,bo)
o ~  ZG(go,ho).
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Bayesian inference of the BMSSR

m For the BMSSR, the parameter ¥ is augmented by the unknown
components labels z = (z1,..., z,)

Bayesian inference of the BMSSR using Gibbs sampling
m Sample from the analytic full conditional distributions:

Zi|oo ~ MLy 7151, .oy Tike) with 7. (1 < k < K) =P(Z; = kly;,Si; ¥)
7l.. ~D(as +ny,...,ax +ng)

By|... ~ N(vo, Vo)

big|... ~ N(v1, V1)

Tl ~ TG (g1, )

&r|... ~IG (a1, b1)

m relabel the obtained posterior parameter samples if label switching by
the K-means-like algorithm of (Celeux, 1999; Celeux et al., 2000).
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Handwritten digit clustering using the BMSSR

m BMSSR applied on a subset of the ZIPcode data set (issued from MNIST)

m Each individual y; contains m; = 256 observations
A subset of 1000 digits randomly chosen from the test set

Figure: Cluster mean images obtained by the BMSSR model with 12 mixture components.

The best solution is selected in terms of the Adjusted Rand Index (ARI) values,
which promotes a partition with K = 12 clusters (ARI: 0.5238).
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Multivariate data

Diabetes Benchmark

Spectrum of bioacoustic data

Objectives
m Clustering

m Dimensionality reduction
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Model-Based clustering of multidimensional data

m Data: (x1,...,2,) A sample of n i.i.d observations in R? from K
sub-populations, with K possibly unknown

m Objective: clustering and dimensionality reduction

Parsimonious mixtures

= Finite Gaussian mixtures: f(x;;0) = > v, mx N(2i; g, Si)
m Eigenvalue decomposition of the covariance matrix® 3 = /\kaAkDf

ool |O9 |= QQQO

AL AA AL

0D 2 U/ 100

ADA ;DT Ap,DA, DT Ap A ADADT A,DADT

ANRZANRANR

AD,A.DI  AyDpA;D} AD,AD} ADpADY

9 Celeux and Govaert (1995); Banfield and Raftery (1993)
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Dirichlet Process Parsimonious Mixtures

m Bayesian parametric inference: (Bensmail, 1995; Bensmail and Celeux, 1996;
Bensmail et al., 1997; Bensmail and Meulman, 2003)

PhD thesis of Marius Bartcus, 2012- Oct.2015°

M. Bartcus. Bayesian non-parametric parsimonious mixtures for model-based clustering. Ph.D. thesis,
Université de Toulon, Laboratoire des Sciences de I'Information et des Systémes (LSIS), October 2015

m Mixture models for multivariate data in a fully Bayesian framework

m Dirichlet Process and Parsimonious Mixtures [C-5,6,8], [J-11]

Dirichlet Processes (DP)
DP(a, Go) (Ferguson, 1973) is a distribution over distributions:

0:|G ~G; Gla,Go~DP(a,Go) ,i=1,2,...

Pélya urn representation (Blackwell and MacQueen, 1973)
Ki—1

0|017-- -1 o~ ﬁGO_ﬁ_Zmé

DP places its probablllty mass on an infinite mixture of Dirac deltas

GIZﬂ'MSgk 0x|Go ~ Go, k=1,2,.. ,W|th27rk—1
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DPM: Generative model
Gla,Go ~ DP(a,Go)
éi|G ~ G
zil0; ~ f(16:)

Chinese Restaurant Process mixtures (Pitman, 2002; Samuel and Blei, 2012)
m Latent variables (z1,...,2x,)
m Predictive distribution: x
i—1
el n
0(zi, Kica +1) + —§(zi, k) -

a+1i—1 Pt a+1i—1

p(Zi = k|Z1, "'7Zi—1;a) =

onwl.an;'_" .@

Parameters. -

m Generative model: zla ~ CRP(z;a)

6..|Go ~ Go
X0, ~ f(162)
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Implemented parsimonious models

‘ Decomposition ‘ Model-Type ‘ Prior ‘ Applied to ‘
Al Spherical g A
Al Spherical g Ak
AA Diagonal g each diagonal element of AA
A A Diagonal g each diagonal element of A\ A
ADADT General w = = ADADT
AxDADT General ZG and W A and = = DADT
/\DAkDT* General g each diagonal element of XA,
A DA DT* General g each diagonal element of \j A
ADkADg General g each diagonal element of AA
)\kaADE General g each diagonal element of A\ A
AD, A DY * General ZG and ZW Xand B = DyA, DY
Ay DAL DY General w =) = A\,Dp A, DT )

Bayesian inference using Gibbs sampling
m Posterior distribution for the component labels:
p(zi = k|lz—;, X, O, ) x p(x;|zi; O)p(zi|z—_i; ) with p(z;]z_;; «) the CRP prior
m Posterior distribution for the component parameters:

p(Ok|2, X, ©_g, 05 H) o< [, —p P(xi|2i = k; 05)p(Oy; H) with p(8y; H) = Prior
distribution over 0y

Bayesian model comparison by using Bayes Factors

_ p(X|M1)p(My) . p(X[My) . _ ; Aot
BF12 = SXn)p(its) ~ p(X| M) with the Laplace-Metropolis approximation

R | R .
P(XIMm) = [ p(X[0m, Mim)p(0m|Mm)d0y, = (21) 2 [H|2p(X|0m, M )p(8:m|Mm)
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Clustering of benchmarks

Diabetes data set, Geyser data set, Crabs data set

g

= 199.58 (Decisive)

2 log BF: ADAD” wvs \:D,AD? = 5 (Substantial)

Fa1cEL CHAMROUKHI

" log 2BF: A\,D,AD? ws A\.DAD? = 36.08 (Decisive)
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Humpback whale song decomposition

m Real fully unsupervised problem

m Data: 8.6 minutes of a Humpback whale song recording (with MFCC)

[t = =

o

Nt et s e

Figure: Humpback Whale. Figure: Spectrum of a signal (20 s).

Objectives

m Discovering “call units”, which can be considered as a whale “alphabet”

m Find a partition of the whale song into clusters (segments), and
automatically infer the unknown number of clusters from the data.
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Unsupervised decomposition of whale song signals

=
EREERE

Freq [0, 5500] Hz
3

s

e |

| | [} i‘\ mr S ' [
Il | I

AL I‘II\I ' Hil I!I\I\I\ \ \‘H II I‘H‘\IIIII\IHHH\-II I I\ \M\I

2 4 6 8 10 12 14
Time in seconds

Song units
o O » N

m Sound demo of Unit 5 DPPM AIL: (sec. 0) (sec. 12)
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Unsupervised decomposition of whale song signals
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Unsupervised decomposition of whale song signals

Freq [0, 5500] Hz
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Unsupervised decomposition of whale song signals

Song units

Freq [0, 5500] Hz
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m Sound demo of Unit 8 DPPM A\, A: (sec. 6) (sec. 12)
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Ongoing research and perspectives

m Advanced mixtures for complex data (My ongoing CNRS leave project)

m Model-based co-clustering for high-dimensional functional data

FunCtiona| |atent b|OCk m0de| (FLBM) available soon on arXiv

Data: Y = (y,;): n individuals defined on a set Z with d continuous functional

variables defined on a set J where y;;(t) = pu(z;(t); ) + €(t), t defined onT.
FLDM model:

fYIX;@) = Y P(ZW)f(Y|X,Z,W;0)
(z,w)EZXW
= > P(Zim)P(W;p)f(Y|X,Z,W;6)
(z,w)EZXW

= Z Hﬂzikﬂquﬂ H F(Yijleis; One) =+t

(z,w)EZXW i,k Jt ,9,k,L

An RHLP is used as a conditional block distribution f(Y'|X,Z, W;8)
Model inference using Stochastic EM
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Perspectives

Hierarchical Mixture of experts for data representation and
classifiaction
m Mixture of experts are universal approximators (Nguyen et al., 2016).
—Consider using MoE in the Fisher space for image/audio
classification: Fisher vectors (Sanchez et al., 2013).
m Latent variable models for unsupervised learning of feature hierarchies:
— consider hierarchical (deep) mixtures of experts (MoE) as in Eigen
et al. (2014)

Patel et al. (2015) introduced a probabilistic theory to answer some
questions on deep learning

Upcoming PhD thesis
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Perspectives

Clustering for massive data

= Mixtures for collaborative clustering of massive data
For distributed massive data

m Consider that the global distribution is a mixture distribution
m Probabilisitc aggregation of locally estimated mixtures on distributed data
m e.g. use as a similarity measure the KL divergence
For non-distributed massive data
m Use ensemble methods to distribute the data:
m Bag of Little Boostraps (BLB) (Kleiner et al., 2014)

m Construct local mixture estimators using classical EM of other techniques on
each BLB sub-sample
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