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Outline

Model-Based Co-Clustering of Multivariate Functional Data
Joint work with Christophe Biernacki, INRIA-Lille

Regularized Mixture-of-Experts for high-dimensional data
Joint work with Bao Tuyen Huynh, Unicaen, LMNO
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Outline

Model-Based Co-Clustering of Multivariate Functional Data
m Motivation
m Model-based co-clustering
m Temporal curve segmentation (RHLP)
m Model-based co-clustering embedding RHLP
m Conclusion and perspectives
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Functional data are increasingly frequent

[James and Hastie, 2001; James and Sugar, 2003]
[Ramsay and Silverman, 2005]

[Chamroukhi et al., 2010]

[Bouveyron and Jacques, 2011]

[Samé et al., 2011]

[Jacques and Preda, 2014]

[Bouveyron et al., 2018]

[Chamroukhi and Nguyen, 2018]
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Clustering of functional data
< a growing investigation of Model-Based Clustering (MBC) for functional data

Some Reviews on MBC for functional data: [Jacques and Preda, 2014; Chamroukhi and Nguyen, 2018]
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Clustering of functional data
< a growing investigation of Model-Based Clustering (MBC) for functional data

Some Reviews on MBC for functional data: [Jacques and Preda, 2014; Chamroukhi and Nguyen, 2018]
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Figure: Original data and clustering results from Chamroukhi [2016b] for the data considered in
the same setting as in Hébrail et al. [2010] (six clusters, each cluster is approximated by five
linear segments (R = 5,p = 1))
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Clustering of functional data

Topex,/Poseidon satellite data®: n = 472 waveforms of m = 70 measured echoes

Original data

Figure: Original data and clustering results from Chamroukhi [2016b] with the same setting as
in Hébrail et al. [2010]: twenty clusters and a piecewise linear approximation of four segments.

2 . .
Satellite data are available at http://www.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html.
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Clustering of functional data

Phonemes data set®: n = 1000 log-periodograms for m = 150 frequencies

Original data Robust EM-MixReg clustering : teration 31; K = 5 Robust EM-MixReg clustering : eration 31: K = §

Figure: Original data and clustering results from Chamroukhi [2016b]

3Data from http://www.math.univ-toulouse.fr/staph/npfda/, used in Ferraty and Vieu [2003]
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Clustering of functional data

Clustering real curves of high-speed railway-switch operations
Data: n = 115 curves of m =~ 510 observations
K = 2 clusters: operating state without/with possible defect

1000

900

800

700

600

500

Power (Watt)

400

300

200

1001

3
Time (Second)

FAICEL CHAMROUKHI Model-based (co-)clustering in some high-dimensional scenarios



Clustering switch operations

Clustering real curves of high-speed railway-switch operations
Data: n = 115 curves of m ~ 510 observations
K = 2 clusters: operating state without/with possible defect
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Outline

Model-Based Co-Clustering of Multivariate Functional Data
m Motivation
m Model-based co-clustering
m Temporal curve segmentation (RHLP)
m Model-based co-clustering embedding RHLP
m Conclusion and perspectives
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This talk: Multivariate functional data clustering

m Multivariate functional data are increasingly present

m e.g: Data continuously recorded for different subjects from multiple subject’ sensors

— Measurements collected from different network elements (transceivers, cells, sites. .. ):
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Figure: An example with d = 30 and n = 20 daily observations [Ben Slimen et al., 2016].
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This talk

Questioning

Clustering of highly multivariate functional data with two guidelines:
m (1) Mathematical guideline: warranty for estimation and selection
m (2) User guideline: keep a user-friendly meaning of the process

Both are important because clustering is a highly risky task. ..

Proposed answering

(1) Model-based co-clustering with (2) temporal curve segmentation

Novelty corresponds to combining both (1) and (2)
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Difference between clustering and co-clustering

m Simultaneous clustering of lines/indiv. (Z) and columns/var. (W)
m Can be used as a way to reduce dimensionality (var. — W)

Original Data Data clustered over rows Data clustered over columns Data co-clustered

300

500 L o
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Figure: Binary data set with n = 500, d =300, K = M =3
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Latent block model for co-clustering

The Latent Block Model [Govaert and Nadif, 2013]

[(X;w) = ) B(Z,W;m,p) f(X|Z,W;6)
~——— —

(zw)eZxW data kind dependent

Hypotheses
m The latent variables Z and W are independent: P(Z, W) = P(Z)P(W) and iid:
P(Z) =TI, P(2:) with z; ~ Multinomial(m1, ..., mx) where mp = Pz, = k)
P(W) =[], P(w;) with w; ~ Multinomial(p1, ..., par) where p, = P(w; = ¢)

m Conditional independence: x;;|(zi, w;) L i (2!, w;!)
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Latent block model for co-clustering

The Latent Block Model [Govaert and Nadif, 2013]

[(X;w) = ) B(Z,W;m,p) f(X|Z,W;6)
—————

(zw)eZxW data kind dependent

Hypotheses
m The latent variables Z and W are independent: P(Z, W) = P(Z)P(W) and iid:
P(Z) =TI, P(2:) with z; ~ Multinomial(m1, ..., mx) where mp = Pz, = k)
P(W) =[], P(w;) with w; ~ Multinomial(p1, ..., par) where p, = P(w; = ¢)

m Conditional independence: x;;|(zi, w;) L i (2!, w;!)

< binary data: binary [Govaert and Nadif, 2003, 2008; Keribin et al., 2012],

< categorical data: multinomial [Keribin et al., 2014]

< contingency table: Poisson [Govaert and Nadif, 2003, 2006, 2008]

< continuous data: Gaussian [Lomet, 2012; Govaert and Nadif, 2013]

— functional data: functional PCA + Gaussian, see further [Ben Slimen et al., 2016]
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Inference for the latent block model

Inference of the latent block model

m variational block EM (VBEM) for maximum likelihood estimation and fuzzy
co-clustering [Govaert and Nadif, 2006, 2008].

m block classification EM (CEM) algorithm for maximum classification likelihood and
hard co-clustering [Govaert and Nadif, 2003, 2006, 2008]

m Bayesian inference [Keribin et al., 2012, 2014]: Bayesian latent block mixtures for
binary data and categorical data & a variational Bayesian inference and Gibbs
sampling.

m Number of blocks estimation: ICL criterion [Lomet, 2012; Keribin et al., 2014]
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Package blockcluster on the cloud

massiccc.lille.inria.fr
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Functional data notation

m Data: (discretized) values of underlying smooth functions, not just vectors
m Data: A sample of n heterogeneous univariate curves (€1,y,),- .., (Zn,Y,,)

m (x;,y,;) consists of m; observations y, = (yi1,- .., Yim;) Observed at the
independent covariates, (e.g., time ¢ in time series), (zi1, ..., Tim,;)
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Functional data modeling: “classical” approach

[Ramsay and Silverman, 2005] and many others

m Step 1: (x,y) decomposed into a finite basis of function
(B-spline...) : Yi(t) =~ 2%, ¢ippr(z(t)) with ¢ estimated by OLS

m Step 2: functional principal components analysis (PCA) which is
performed as a usual PCA of the basis expansion coefficients ¢ using

a metric defined by the inner products between the basis functions

m Step 3: set a probability distribution on c, typically Gaussian

It defines a distribution on c instead of y. ..
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Functional data modeling: regression RHLP

Alternatively, use a segmentation via generative piecewise polynomial
regression modeling of f(y|x) [Chamroukhi et al.])

— Regression with Hidden Logistic Process (RHLP)
— See formula later

It gives a distribution on y and also a meaningful segmentation of the curve|
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RHLP for modeling different types of functions
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Package mixtcomp on the cloud

massiccc.lille.inria.fr
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Multivariate functional data co-clustering

[Chamroukhi and Biernacki, 2017]

m Data: Y = (y;;) a data sample matrix of n individuals defined on a
set Z and d continuous functional variables defined on a set J.

m Each variable y,; is an univariate curve y;; = (yij(tl), e ,yij(tTij))
of T} observations y(t) € R linked to covariates
xij = (z4(t1), ..., w45(tr,)) at the points (ty,...,t7,), typically a
sampling time

b
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Embedding RHLP in co-clustering

[Chamroukhi and Biernacki, 2017]
m Functional Latent Block Model for Co-clustering:

[Y|x;@) = Y P(Z;mP(Wip)f(Y]X,Z,W;6)
(z,w)EZXW

Z szm szjje H f(yijlwiz; Ore) 570
gt NN

(z,w)EZXW i,k i,3,k,€

RHLP

with parameter vector ¥ = (77, p7,0")7, where w = (m1,...,7x)7,

P = (pla"~7pM)Tr and 6 = (0{17"'79’11;27-”70?{M)T'
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Embedding RHLP in co-clustering

m RHLP [Chamroukhi et al.,, 2000]: model the conditional data distribution for each block
kl, assuming that each functional variable y,; is governed by an Si¢-state hidden
process of y;;:

Tij Ske

.f(ym |w7«J’ eke H Z O”CZT t £k2 N(ylj ﬂkh‘w’b] (t)’ O-EZT)

t=1r=1

where the dynamical weights o’s are given by the multinomial logistic:

exp (&xero + Errert) .
1+ ZS“_ exp (Ekero + Eperrit)

aker(t; €ge) =

< Can be seen as a generative piecewise polynomial regression model where the
transition points are smoothly controlled by logistic weights

< a particular mixture-of-experts model [Jacobs et al., 1991; Jordan and Jacobs,

1904] /(parametric) mixture of regressions with predictor-dependent mixing
proportions [Young and Hunter, 2010]
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Block mean curve approximation and segmentation

m Approximation: a prototype mean curve

Skt
—~ o~ -~ AT
el (zi, wy) = g = E[Y ()] 25, w5, x(1); ¥] = Zakér(tQ &ke)Brerwi(t)

s=1

— A smooth and flexible approximation thanks to the the logistic weights

m Curve segmentation:

he|(zi, wj;) = arg | Jnax E[H |z, wj, xi5(t); €] = arg é}caéXK ager(t; €xe)
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Parameter estimation: EM not feasible

m The complete-data log-likelihood:
log Lo(®) = log f(Y,Z, W, H|X;®)

Z zik log T + Z wje log pe

ik 3,0

+ Y znwjche log [aker(t; Eel)N (yz‘j (1); Brer@is (t)mzzr)]

i,5,k,4,t,r

where (hir;t =1,...,T55,7 = 1,...,Ske) is a binary variable indicating from
which state the observation y;;(¢) within the block cluster k¢ is originated
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Parameter estimation: EM not feasible

!

!

Qv

The E-Step computes the expected complete-data log-likelihood, given the
observed curves (X,Y), and the current parameter estimation ¥(%)

~—

—E [log L.(P)| X, Y;w@)]
= Plzik = Uy, @) logm + > Plwse = 1|y, @45) log pe
: -

i,k
+> 0 Plriswe = Ly, @) P(her = zin, wje, yis (£), 345 () %

4,45k, 65t

log [Oéker (& &) N (yij (t); ﬂzer“’ij (), Uzer)}

Requires the calculation of the posterior joint distribution P(zikw;e = 1ly,;, ij)

does not factorize due to the conditional dependence on the observed curves of the
row and the column labels

[Govaert and Nadif, 2008, 2013] proposed a variational approximation by relying on
the Neal and Hinton's interpretation of the EM algorithm [Neal and Hinton, 1998].

We adopt this variational approximation in our context
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Variational block EM algorithm

P(zirwje = 1|y, ®i5) = P(zie = 1|y, @ij) X P(wje = 1]y, T4j) J
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Variational block EM algorithm

P(zinwie = 1|y, Tiz) = P(ziw = Ly, i) X Plwje = 1|y, Tiz) J

Initialization: start from an initial solution at iteration ¢ = 0, and then alternate at the
(g + 1)th iteration between the following variational E- and M- steps until convergence:

VE Step Estimate the variational approximated posterior memberships:

2.(13+1)O(
k - = (a) 2
T exp(52;. .0, 52 B2 Tog] e (1 60N (s (1): 8L s (), 00) ) ])

17)](.3+1)o<
- > (a) 2
P eXp(Zi,k,t,r 29 Y 10%[%0(15;55:2))/\[ (yz‘j (1) By @3 (1), o) )])
~ T 2
R Vocal®) (6 610N (s (0 B, @i (1), 019 )
where:
m Ziyp = Pzir = y,;, ij),

B Wi = Plwje = 1]y, Tiz),
| iztr - P(htr - 1|Ziawj7y1](t)7x"](t))

Model-based (co-)clustering in some high-dimensional scenarios
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Variational block EM algorithm

M Step update the parameters estimates 8(?+1) given the estimated posterior
memberships at the current iteration g + 1:

s(a+1)

(Q+1) i Z

Ty D
~(q+1)

(q+1) _ 25D
plet = T2
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Variational block EM algorithm

M Step update the parameters estimates glaty) given the estimated posterior
memberships at the current iteration g + 1:

s(a+1)

(¢1+1) i 240 Pk

T n
platD)

(q+1) _ 2P,
P = B

The update of each block parameters O, consists in a weighted version of the
RHLP updating rules:

OF (§k0) b
askeasuhu o T o) which is the IRLS

maximisation of F(§,,) =, ., ~fg)u?§§)h(q> log aker (t; €5p) W.rt €.

(new) _ #(old) PF(grp) ]
ﬁnew ktz _ |: 1Y)
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Variational block EM algorithm

M Step update the parameters estimates (%) given the estimated posterior
memberships at the current iteration g + 1:

s(a+1)
71_](;1‘0-1) i 240 Pk

n
~(q+1)
(q+1) _ 2P,

P = Bt
The update of each block parameters O, consists in a weighted version of the
RHLP updating rules:

(new) _ g(old) _ [9°F(&xp) ]~ OF (&40)

ke ke agkeaga Epo= g(old) EI3W

maximisation of F(§,,) =, ., ~fg)u~1ﬁ)h(q> log aker (t; €5p) W.rt €.

which is the IRLS

&kzzﬁ,(&ld)

The regression parameters updates consist in analytic WLS problems:
—1
1 ~ ~ }; A ): ~ ~ }{ A
l(cql-: ) = [Zz ] (Q) (q) T Ejl)cr ZJ:| Ei,j Zz(lz) ;Z) T (]kryz]

2t _ PRI A IYP NS 97 RARS I
Oke _ _
" Si 2wy trace(ALT))

the ith curve, AE;II)W

where X;; is the design matrix for

is the diagonal matrix whose diagonal elements are the

posterior segment memberships {hEgZT,t =1,..., Ty}
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< It is also possible to use the Classification EM (CEM) approximation of EM [Celeux
and Govaert, 1992].

Parameter estimation by an SEM algorithm: SEM-FLBM

m — The SEM algorithm [Celeux and Diebolt, 1985] allows to overcome some
drawbacks of the variational-EM algorithm, including its sensitivity to starting
values; SEM does not use an approximation.

m Eg. SEM for latent block models for categorical data [Keribin et al., 2012, 2014]

m The formulas of VEM-FLBM and SEM-FLBM are essentially the same, except that
we incorporate a stochastic step consisting of sampling binary indicator variables
Zik, Wje and h- according to Zik, Wjie and Ay,
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Conclusion and perspectives

Conclusion

m A full generative framework for the cluster analysis and segmentation of
high-dimensional non-stationary functional data

m The model inference can be performed by a variational EM algorithm or SEM

Perspectives
m Numerical experiments

m Package
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Outline

Regularized Mixture-of-Experts for high-dimensional data
m Mixture-of-Experts (MoE) Modeling and MLE
m Regularized MLE of the MoE
m Proposed EM algorithm with block corrdinate ascent

m Experimental study

Model-based (co-)clustering in some high-dimensional scenarios
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Context

NMoE 1
34f o Custert
o Cluster2
3.2F ——Expert mean 1 05)
—— Expert mean 2
3|
o0
28
%
26
>
> 2.4 o2 ° 5°° -
22|
o
2
S o o o o
1.8} °
~1.51 ——True mean (NMo)
15| ~ - ~True con. regions
—— Estimated moan (NMoE)
14£0>” - - - Estimated cont. regions
14 7 16 18 2 22 24 26 28 3 "1 08 -06 -04 -02 0 02 04 06 08 1
X x

m Heterogeneous regression data (x,y) < underlying unknown partition z
m Data issued from non-linear regression function f(y|x)

Modeling framework

Mixture-of-experts/(parametric) mixture of regressions with
predictor-dependent mixing proportions :

plyile:) = > Plaila:)p(yilei, ),

Zi
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Mixture-of-Experts (MoE) modeling framework

Observed pairs of data (x,y) where the response y € R for the predictors
x € RP governed by a hidden categorical random variable Z

Mixture of experts (MoE) [Jacobs et al., 1991; Jordan and Jacobs, 1994] :

K
fyle:0) = > m(mw) filyle;0k)
k=1 Y
Gating network Expert Network

exp (wko+w£w)
1+Zf:_11 exp (wgo+wzm)

Gating network (e.g softmax): 7y (x; w) =
Experts network (e.g Gaussian regressors): fi(y|@; 05) = ¢ (y; pu(x; By), o7)
with parametric (non-)linear regression functions u(x; 3;,)

Non-normal MoE, for data with atypical observations, and with possible
heavy tailed and asymmetric diStl’ibUtionS: [Chamroukhi, 2016a, 2017; Nguyen and

Chamroukhi, 2018]

parameter vector 8 = (w?,07,...,0%)7T
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lllustration
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Standard MLE of the MoE model

m MLE: 6 is commonly estimated by maximizing the observed-data log-likelihood:

0, c arg max L(0)
with
L(8) = In f((®1,1),- -, (®a,91);0) = 7 In 30,0 (s w) f (] i3 0).
— the EM algorithm (Dempster et al. [1977])
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Standard MLE of the MoE model

m MLE: 6 is commonly estimated by maximizing the observed-data log-likelihood:

~

0, c arg max L(0)

with
L) = In f((z1,51), -, (20, 51):0) = 327y In D250 me (s w) f (yy]ai; Or)-
— the EM algorithm (Dempster et al. [1977])

< Consider a high-dimensional setting
— Looking for a sparse models

Regularized MLE of the MoE

RMLE: @ is estimated by maximizing a penalized observed-data log-likelihood:

~

0, € arg max PL(0)

with PL(8) = L(8) — Pen(6)

m — Pen(0) should encourage sparsity

m parameter estimation and selection problem
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Proposed Regularized Mixture of Experts model

K K-1 p
Pen(6) = > MellBill+>_ wrllwsll + 5wl
k=1 k=1
Lasso-like pen. Elastic-Net like pen.

m Lasso penalty for the experts — encourage a sparse solution

m The elastic net penalty (Zou and Hastie [2005]) for the gating network:
— reduce the norm of the estimated values of the gating network parameters by
using the Lo penalties;
— the Lasso penalty to recover a sparse solution

m The convexity of L1 and Ly penalties have also advantageous numerical properties.

m If the correlation between the features is high, one can add Ls penalties for the
expert network.
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Regularized MLE via an EM algorithm

m The penalized log-likelihood function:
K K—1 p
PL(0) = L(6)— > MellBlli — > vellwellr — 5||wk||§
k=1 k=1

m The penalized complete-data log-likelihood function:

K-1

K
p
PLe(8) = Le(6)= > Akl|Bylli — Y wllwel — Sllwel3
k=1 k=1

with
Le(8) =) | zirlog [m(@s; w) f (y,]ai; O]

= 1
such that z;, = 1 iff z; = k (the data pair (x;, y;) originates from expert k
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Parameter estimation for RMoE
Khalili's method [KhaIiIi, 2010]:

m Approximates the L; penalty function in a some neighborhood by an ¢ -local
quadratic function

n 2 2
t| = nlto| + t* —1p).
77| | 77| 0‘ 2(|t0| 6)( O)

— Almost surely none of the components will be exactly zero.

m Needs using a threshold to recover the zero coefficients
< The size of threshold affects the degree of sparsity of the solution.

m The Newton-Raphson algorithm is used to update the M-step of the EM algorithm.
< This approach still require computing the inverse matrix.

In our proposal:

m A block EM algorithm with coordinate ascent algorithm to estimate the
parameters:
— Exact L penalty regularization;
< Avoids computing matrix inversion;
— Avoids using a threshold to recover the zero coefficients.
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Block EM algorithm with coordinate ascent

E-step
m Compute the conditional expectation of the penalized complete-data log-likelihood

Q6;0') = E[PLC(OND;G@]

= Z 7 1og [ (@; w) fi (@i 04)]

i=1 k=1
K K—-1 P
2
= XellBrell = D (llwwll — 5 llwil[2)-
k=1 k=1

< Calculate the posterior component probabilities:
M(wi;w@))/\/’(yi; (a) +90T,3(q),0;(cq)2)

m(@i; w@)N (yi; B + 2T B2, %)

D =P(Z; = kly;,2:;0'9) =

WMx

< As in standard MoE
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Block EM algorithm with coordinate ascent (cont.)

M-step
m Maximizing the Q function: 8¢tV ¢ argmaxe Q(6; 0(‘1)) with

Q(6;0') = Q(w;0'”) + Q(B,0;0'?),

where
K K—1
Qw;0) = Z; i log me(asiw)= 3 (o = Gl )

— a weighted regularized multiclass logistic regression problem
and

K
707 = ZZvj?logNyuﬁkom Brrot)— > Ml Billn
=

k=1 1i=1

— K independent weighted LASSO problems

1)

)
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Updating the gating network parameters

m Coordinate ascent algorithm to update w Tseng [1988, 2001]

m wy; is updated by maximizing the component (k, 5) of (1) given by

F(wr;;09) — ypwy; , ifwe; >0 (F1)
Q(wgj; e(Q)) = { F(0; 0(‘1)) , ifwg; =0 )
F(wkj; O(Q)) + Yewr; if wr; <0 (F2)

n n K—1
o
F(wkj;g(LZ)) _ E Ti(;g)(ka‘ngmi)—E :10g(1—|—§ :ewuﬁ—wl mt)_gwij. (3)
i=1 =1 =il

v

Univariate Newton-Raphson algorithm

m I and F> are smooth univariate concave functions in wy;. < Univariate
Newton-Raphson algorithm can be used to update wy;

WD @ _ (azF(wkj; ) )

OF (wy;; 0'7)
ki T Wy 2wy, (s) (

8wkj

- "YkSIgn(’LUk])) ’ (s)?
wy

92 F (wy,;;0(?) and OF (wj;

0(2)
3 have closed-form.
Wi 5

where 9wy,
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Updating the expert parameters

M-step (cont.)

m Update fy; using coordinate ascent algorithm with soft-thresholding operator

IB[S+1] = ( )2 Z 2 EZ]]%J /Z T'L(Ig)xfja

s s s|T .
where il = y; — Bl — BE @, + Bi2i;, Sy (u)]; = sign(u;)(|us| — 7)+ and

(z)+ = max{z,0} in the sth loop of the coordinate ascent algorithm.

[s+1 27_1(]3) vi—x s+1 /ZTZ(:)~
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Updating the expert parameters

M-step (cont.)

m Update fy; using coordinate ascent algorithm with soft-thresholding operator

IB[S+1] = ( )2 Z 2 'EZ]]J;U /Z T'L(Ig)mfja

s s s|T s .
where ris) = yi — Bl — By @i + B @i, [Sy(u)]; = sign(uy)(Jus| — )+ and

(z)+ = max{z,0} in the sth loop of the coordinate ascent algorithm.
[s+1 27_1(]3) i — s+1 /Z 7_Z(Ig).
m Rerun the E-step, keep
42 12 +1 1 2 2 1 1
(w ](Cq )’,wl(cq )) _ (wl(;(z) )’,w(qvL )) (,B(‘H ),ﬁ(ﬁ )) (Bl(c%+ )7 l(€11+ ))7

(¢+2)

and update ai as follows

q+2) Z (q+1) ﬂ(q+2) I@(q+2) /Z (q+1)
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Simulation study
Simulation protocol

e & ~ N(0; %) with corr(azj, ;) = 0.57 9", K =2
e Sample size: n = 300, 100 different data sets;
e The regression coefficients:

(B10,81)" = (0,0,1.5,0,0,0,1) ;01 = 1

(B20,82)" = (0,1,-1.5,0,0,2,0)";02 = 1
(wi0,w1)" = (1,2,0,0,-1,0,0) ;03 = 1

Considered approaches for comparison

e The standard MoE;

e MoE+L; (MoE with Ly penalties in the gating network);

e MoE-BIC (MoE with model selection using BIC criterion - 100 submodels);
e MIXLASSO (MLR with Lasso penalties) (see Khalili and Chen [2007]);

Evaluation criteria

e The sensitivity /specificity (sparsity);
e The parameter estimation (density estimation);
e The misclassification error: Adjust rand index - ARI (clustering).
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Sensitivity /specificity result

m Sensitivity (S1): proportion of correctly estimated zero coefficients;

m Specificity (Sz2): proportion of correctly estimated nonzero coefficients.

Method Expert 1 Expert 2 Gate
S1 Sa S1 Sa S1 Sa
MoE 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000
MoE+ L, 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000
MoE-BIC 0.920 | 1.000 | 0.930 | 1.000 | 0.850 | 1.000
MIXLASSO 0.775 | 1.000 | 0.693 | 1.000 | N/A N/A
Our MoE-Lasso+L, | 0.700 | 1.000 | 0.803 | 1.000 | 0.853 | 0.945

Table: Sensitivity (S1) and specificity (S2) results.
® MoE and MoE+ L2 could not be considered as model selection methods since their
sensitivity equal zero.
m MIXLASSO can detect the zero coefficients in the experts. However, this model
has a poor result when clustering the data.
m The MoE-Lasso+ L2 model can detect the zero coefficients in the experts and the
gating network.
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Parameter estimation for expert 1

® (B10,83)" =(0,0,1.5,0,0,0,1)".

= - . :
s ] s = .
== ] ==
-+ 8
o) B — ———
H i 8 &8 % & & 3

MoE-BIC

.
-+

L R

MIXLASSO
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i

i

i

i

i

i

i

MoE-Lasso + Lo
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Parameter estimation for expert 2

® (B20,8,)" =(0,1,-1.5,0,0,2,0)".

: - - -
= - =
- . - s . C .
. = == = = = = _ =
- 4 - - - . - - — 8
= = ==
2 & & ; ; ; ; & & & g & E E E & & & & 2 2
MoE MoE-L, MoE-BIC
- -

- -
MIXLASSO MoE-Lasso + Lo
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Parameter estimation for gating network

m (w0, w1)T =(1,2,0,0,-1,0,0)7.

MoE MoE-L-
{aEm Jr=
=, N
“ T S e
= . B
MoE-BIC MoE-Lasso + L»
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Result for data clustering

‘ Model ‘ MoE ‘ MoE+ Lo ‘ MoE-BIC ‘ MoE-Lasso + Lo ‘ MIXLASSO ‘
| C.rate | 89.57%(1.65%) | 89-62%(1.63%) | 90-05%(1.65%) | 89-46%(1.76%) | 82-89%(1.02%) |

Table: clustering accuracy results (correct classification rate and Adjusted Rand Index).

Remarks

m MoE-BIC provides the best results. However, it is hard to apply BIC in reality
especially for high dimensional data, since this involves a huge collection of model
candidates.

m MIXLASSO can detect zero coefficients in the experts, but it provides a poor
result when clustering data.

m MoE-Lasso+ L2 can detect zero coefficients in the model and provide a
competitive result with MoE, MoE-L; in term of clustering, although it also causes
bias to the non-zero coefficients.

v
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Applications to real data sets

m For real data sets, we calculate the mean squared error between the response
variable Y with its prediction Y, where

K
Y = 7k (2; @) (Bro + iUT/Bk)~
k=1

m Housing data: 13 features, 506 observations, K = 2.

MoE MoE-Lasso+Ls (Khalili) | MoE-Lasso + Lo
MSE 01544(577) 02044(709) 01989(619)

Table: Results for Housing data set.

m Baseball salary data: 32 features, 337 observations, K = 2.

MoE MoE-Lasso + Lz | MIXLASSO
MSE 02625(758) 02821(633) 11858(2792)

Table: Results for Baseball salaries data set.
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The proximal Newton method

m We recently improve the proposed algorithm by using the proximal Newton
method (Lee et al. [2006], Lee et al. [2014] and Friedman et al. [2010]) for
updating the gating network parameters.

m The idea of the proximal Newton method:
e Approximate the smooth part of Q(w; 0(‘7)) with its local quadratic form;
e Use coordinate ascent with soft-thresholding operator to solve the resulting
approximated convex optimization problem;
e Combine with backtracking line search to update w.
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Extension result for proximal Newton method

m Coordinate ascent algorithm (CA) VS proximal Newton (PN) method:

Criteria MoE-Lasso + L; (CA) | MoE-Lasso + L2 (PN)
C.Rate 89.46%(1.76%) 89.53%(1.65%)
PL(O) value —558.140(12_99) —558.410(13_03)

Table: Simulation results.

m Application of the proximal Newton algorithm to the residential building data set:
107 features, 372 observations, K = 3.

Proximal Newton | 0.0120( g79)

Table: Results for residential building data set.
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Conclusion and perspectives

Conclusion

We propose a regularized MoE which does not require using approximations as in
standard MoE regularization

A blockwise EM algorithm with coordinate ascent algorithm is proposed to
monotonically maximize the RMoE objective function

The updating of the gating network for some situations is time consuming since we
don't have a closed-form

The algorithm has been improved by using proximal Newton method to update the
gating network, which has a closed-form update for each parameter and improve
the running time

Future work: Estimation and feature selection for hierarchical MoE and MoE with
discrete data, ...
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Thank you for your attention!
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