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Data with possible atypical observations, skewed
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Figure: Fitting MoLE to the tone data set with ten outliers (0, 4).

Objectives

Derive robust models to fit at best the data and deal with possible

features like skewness, heavy tails
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Outline

1 Introduction

2 Non-normal mixtures of experts
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1 Introduction

2 Non-normal mixtures of experts

The skew-normal mixture of experts model

The t mixture of experts model

The skew t mixture of experts model

Prediction, clustering and model selection with the non-normal MoE

Experiments

An illustrative example
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Non-normal mixtures of experts

Problem

Mixture of experts (MoE) is a popular framework for modeling heterogeneity in

data machine learning and statistics

Investigate (MoE) for continuous data, in the case where the expert components

are non-normal, (do not follow the Normal distribution)

Indeed , for a set of data containing a group or groups of observations with

asymmetric behavior, heavy tails or atypical observations, the use of normal

experts may be unsuitable and can unduly affect the fit

Objectives

Overcome these (well-known) limitations of MoE modeling with the normal

distribution.

We proposed three non-normal derivations including two robust mixture of experts

(MoE) models. ↪→ suitable to accommodate data which exhibit additional features

such as skewness, heavy-tails and which may be affected by atypical data

??Chamroukhi (2015)

Faicel Chamroukhi On some new Mixtures-of-Experts Models 5



Mixture of experts for continuous data

Mixture of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs,

1994) are used in regression, classification and clustering.

Observed pairs of data (x, y) where y ∈ R is the response for some

covariate x ∈ Rp governed by a hidden categorical random variable Z

MoE model the component membership variable Z as a logistic

function of some predictors r ∈ Rq (the gating network)

P(Z = k|r;α) = πk(r;α) =
exp (αTk r)∑K
`=1 exp (αT` r)

MoE decompose the nonlinear regression model f(y|x) as:

f(y|x;Ψ) =

K∑
k=1

πk(r;α)fk(y|x;Ψk)

where fk(y|x;Ψk) is the conditional density of a parametric regression

function and the πk’s are covariate-varying mixing proportions.

The model parameter vector: Ψ = (π1, . . . , πK−1,Ψ
T
1 , . . . ,Ψ

T
K)T
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The normal mixture of experts model and its MLE

MoE for regression usually use normal experts fk(y|x;Ψk):

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α)N
(
y;µ(x;βk), σ

2
k

)
where the component means are defined as parametric (non-)linear

regression functions µ(x;βk).

Given an i.i.d sample of n observations (y1, . . . , yn) with the

covariates (x1, . . . ,xn) and (r1, . . . , rn), the NMoE model

parameters are estimated by maximizing the log-likelihood

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)N
(
yi;µ(x;βk), σ

2
k

)
by using the EM algorithm

However, the normal distribution is not adapted to deal with

asymmetric and heavy tailed data. It is also known that the normal

distribution is sensitive to outliers.
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Contribution

I introduced three new non-normal mixture of experts (NNMoE) that

can better accommodate data exhibiting non-normal features,

including asymmetry, heavy-tails, and the presence of outliers.

The models rely on distributions that generalize the normal
distribution:

1 the skew-normal MoE (SNMoE) [J-12]

2 the t MoE (TMoE) [J-13]

3 the skew-t MoE (STMoE) [J-14]

Dedicated E(C)M algorithms are developed to estimate the models

parameters by monotonically maximizing the observed data

log-likelihood.

I describe how the presented models can be used in prediction in

regression as well as in model-based clustering of regression data.
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The skew-normal mixture of experts model

The skew-normal mixture of experts model

The skew-normal mixture of experts (SNMoE) model uses the

skew-normal distribution as density for the expert components.

The skew-normal distribution (Azzalini, 1985, 1986) with location

µ ∈ R, scale σ2 ∈ (0,∞) and skewness λ ∈ R has density

f(y;µ, σ2, λ) =
2

σ
φ(
y − µ
σ

)Φ

(
λ(
y − µ
σ

)

)
where φ(.) and Φ(.) denote, respectively, the pdf and the cdf of the

standard normal distribution.

When the skewness parameter λ = 0, the skew-normal reduces to the

normal distribution.

The presented skew-normal mixture of experts (SNMoE) extends the

skew-normal mixture model (Lin et al., 2007b) to the case of mixture

of experts framework, by considering conditional distributions for both

the mixing proportions and the means of the mixture components.

Faicel Chamroukhi On some new Mixtures-of-Experts Models 9



The skew-normal mixture of experts model

The skew-normal mixture of experts model

The SNMoE is therefore a MoE model with skew-normal experts and

is defined as follows. Let SN(µ, σ2, λ) denotes a skew-normal

distribution with location parameter µ, scale parameter σ and

skewness parameter λ. A K-component SNMoE is then defined by:

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α)SN
(
y;µ(x;βk), σ

2
k, λk

)
where each expert component k has indeed a skew-normal

distribution, whose density is defined by (1). The parameter vector of

the model is Ψ = (αT1 , . . . ,α
T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T with

Ψk = (βTk , σ
2
k, λk)

T the parameter vector for the kth skewed-normal

expert component.

It is obvious to see that if the skewness parameter λk = 0 for each k,

the SNMoE model reduces to the NMoE model.
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The skew-normal mixture of experts model

The skew-normal mixture of experts model

The SNMoE model is characterized as follows.

Stochastic representation of the SNMoE: A random variable Yi is

said to follow the SNMoE model if it has the following representation:

Yi = µ(xi;βzi) + δziσzi |Ui|+
√

1− δ2zi σziEi.

where U and E be independent univariate random variables following

the standard normal distribution N(0, 1) with pdf φ(.), |U | denotes

the magnitude of U and δzi =
λzi√
1+λ2

zi

where Zi ∈ {1, . . . ,K} is a

categorical variable Zi which follows the multinomial distribution

Zi|ri ∼ Mult(1;π1(ri;α), . . . , πK(ri;α))

where each of the probabilities πzi(ri;α) = P(Zi = zi|ri) is given by

the logistic function.
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The skew-normal mixture of experts model

The skew-normal mixture of experts model

The SNMoE model is characterized as follows.

The stochastic representation of the SNMoE leads to the following

hierarchical representation

Hierarchical representation of the SNMoE

Yi|ui, Zik = 1,xi ∼ N
(
µ(xi;βk) + δk|ui|, (1− δ2k)σ2k

)
,

Ui|Zik = 1 ∼ N(0, σ2k),

Zi|ri ∼ Mult (1;π1(ri;α), . . . , πK(ri;α))

where Zik are the binary latent component-indicators such that

Zik = 1 iff Zi = k, Zi = (Zi1, . . . , ZiK) and δk = λk√
1+λ2

k

This hierarchical incomplete data representation facilitates the

inference scheme by using the ECM algorithm.
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The skew-normal mixture of experts model

MLE via the ECM algorithm

Given an observed i.i.d sample of n observations {(yi,xi, ri)}ni=1, the

parameter vector Ψ of the SNMoE model can be estimated by

maximizing the observed-data log-likelihood:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)SN
(
y;µ(x;βk), σ

2
k, λk

)
.

⇒ A dedicated Expectation Conditional Maximization (ECM)

algorithm

The ECM algorithm (Meng and Rubin, 1993) is an EM variant that

mainly aims at addressing the optimization problem in the M-step of

the EM algorithm. In ECM, the M-step is performed by several

conditional maximization (CM) steps by dividing the parameter space

into sub-spaces. The parameter vector updates are then performed

sequentially, one coordinate block after another in each sub-space.
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The skew-normal mixture of experts model

Maximum likelihood estimation via the ECM

algorithm

The complete-data log-likelihood of Ψ , where the complete-data are
{yi, zi, ui,xi, ri}ni=1, is given by:

logLc(Ψ) = logLc(α) +

K∑
k=1

logLc(Ψk),

with

logLc(α) =

n∑
i=1

K∑
k=1

Zik log πk(ri;α),

logLc(Ψk) =

n∑
i=1

Zik

[
− log(2π)− log(σ2

k)− 1

2
log(1− δ2k)

− d2ik
2(1− δ2k)

+
δk dik ui

(1− δ2k)σk
− u2i

2(1− δ2k)σ2
k

]
,

where dik = yi−µ(xi;βk)
σk

.
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The skew-normal mixture of experts model

ECM for the SNMoE: E-Step

E-Step calculates the Q-function

Q(Ψ ;Ψ (m))=E
[

logLc(Ψ)|{yi,xi, ri}ni=1;Ψ (m)
]
=Q1(α;Ψ (m)) +

K∑
k=1

Q2(Ψk;Ψ (m)),

with
Q1(α;Ψ (m)) =

n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α),

Q2(Ψk;Ψ (m)) =

n∑
i=1

τ
(m)
ik

[
− log(2π)− log(σ2

k)− 1

2
log(1− δ2k)

+
δk dik e

(m)
1,ik

(1− δ2k)σk
−

e
(m)
2,ik

2(1− δ2k)σ2
k

− d2ik
2(1− δ2k)

]
where the required conditional expectations (analytic) are given by:

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

e
(m)
1,ik = EΨ (m) [Ui|Zik = 1, yi,xi, ri] ,

e
(m)
2,ik = EΨ (m)

[
U2
i |Zik = 1, yi,xi, ri

]
.

The τ
(m)
ik ’s represent the posterior distribution of the hidden component

labels Zi and correspond to the posterior memberships of the observed

data. The conditional expectations e
(m)
1,ik and e

(m)
2,ik correspond to the

posterior distribution of the hidden variables Ui and U2
i , respectively. From

(1), (1), and (1), it follows that the Q-function is calculated by
analytically calculating these conditional expectations as shown in 46.
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The skew-normal mixture of experts model

CM-Step 1 Calculate α(m+1) = arg maxαQ1(α;Ψ (m)). does not exist in
closed form (Unlike in skew-normal (regression) mixtures)
The Iteratively Reweighted Least Squares (IRLS) algorithm:

α(l+1) = α(l) −
[∂2Q1(α,Ψ (m))

∂α∂αT

]−1
α=α(l)

∂Q1(α,Ψ (m))

∂α

∣∣∣
α=α(l)

Then, for k = 1 . . . ,K,

CM-Step 2 Calculate β
(m+1)
k by maximizing Q2(Ψk;Ψ

(m))

β
(m+1)
k =

[ n∑
i=1

τ
(m)
ik xix

T
i

]−1 n∑
i=1

τ
(q)
ik

(
yi − δ(m)

k e
(m)
1,ik

)
xi.

CM-Step 3: Calculate σ2k
(m+1)

by maximizing Q2(Ψk;Ψ
(m))

σ2
k

(m+1)
=

∑n
i=1 τ

(m)
ik

[(
yi − βTk

(m+1)
xi
)2

− 2δ
(m+1)
k e

(m)
1,ik(yi − βTk

(m+1)
xi) + e

(m)
2,ik

]
2
(

1− δ2
k

(m)
)∑n

i=1 τ
(m)
ik

·

CM-Step 4 Calculate λ
(m+1)
k by maximizing Q2(Ψk;Ψ

(m)) : Solution of:
σ2
k

(m+1)
δk(1− δ2

k)
∑n
i=1 τ

(m)
ik + (1 + δ2

k)
∑n
i=1 τ

(m)
ik (yi − βTk

(m+1)
xi) e

(m)
1,ik

− δk
∑n
i=1 τ

(m)
ik

[
e

(m)
2,ik +

(
yi − βTk

(m+1)
xi
)2 ]

= 0· root finding (Brent’s method

(Brent, 1973)).

Then, given the update δ
(m+1)
k , the update of the skewness parameter λk

is calculated as λ
(m+1)
k =

δ
(m+1)
k√

1−δ2
k

(m+1)
.

It is obvious to see that when the skewness parameter λk = δk = 0 for all
k, the parameter updates for the SNMoE corresponds to those of the
standard NMoE. Hence, compared to the standard NMoE, the SNMoE
model is characterized by an additional flexibility feature, that is the one
to be handle possibly skewed data.
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The skew-normal mixture of experts model

However, while the SNMoE model is tailored to model the skewness

in the data, it may be not adapted to handle data containing groups

or a group with heavy-tailed distribution.

The NMoE and the SNMoE may thus be affected by outliers.

⇒ Handle the problem of sensitivity of normal mixture of experts to

outliers and heavy tails. I first propose a robust mixture of experts

modeling by using the t distribution.
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The t mixture of experts model

The t mixture of experts model

The proposed t mixture of experts (TMoE) model is based on the t

distribution, which is robust generalization of the normal distribution.

The t distribution is more robust than the normal distribution to

handle outliers in the data and to accommodate data with heavy

tailed distribution.

This has been shown in terms of density modeling and cluster analysis

for multivariate data (Mclachlan and Peel, 1998; Peel and Mclachlan,

2000) as well as for univariate data (Lin et al., 2007a) and regression

mixtures (Bai et al., 2012; Wei, 2012; Ingrassia et al., 2012).

The t-distribution with location µ ∈ R, scale σ2 ∈ (0,∞) and degrees

of freedom ν ∈ (0,∞) has the probability density function

f(y;µ, σ2, ν) =
Γ(ν+1

2 )
√
νπ Γ(ν2 )

(
1 +

d2y
ν

)− ν+1
2

,

where d2y =
(y−µ

σ

)2
denotes the squared Mahalanobis distance
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The t mixture of experts model

The t mixture of experts model

The proposed t mixture of experts model extends the t mixture

model, first proposed by Mclachlan and Peel (1998); Peel and

Mclachlan (2000) for multivariate data, as well as the regression

mixture model using the t-distribution as in (Bai et al., 2012; Wei,

2012; Ingrassia et al., 2012) to the MoE framework.

A K-component TMoE model is defined by:

f(y|r,x;Ψ) =
K∑
k=1

πk(r;α) tνk
(
y;µ(x;βk), σ

2
k, νk

)
.

The parameter vector of the TMoE model is given by

Ψ = (αT1 , . . . ,α
T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T where Ψk = (βTk , σ

2
k, νk)

T

When the robustness parameter νk →∞ for each experts k, the

TMoE model approaches the NMoE model
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The t mixture of experts model

The t mixture of experts model

Stochastic representation for the TMoE Let E ∼ φ(.). Suppose
that, conditional on the hidden variable Zi = zi, a random variable
Wi is distributed as Gamma(

νzi
2 ,

νzi
2 ). Then, given the covariates

(xi, ri), a random variable Yi is said to follow the TMoE model if

Yi = µ(xi;βzi) + σzi
Ei√
Wzi

,

where the categorical variable Zi|ri is multinomial

Hierarchical representation of the TMoE model

Yi|wi, Zik = 1,xi ∼ N

(
µ(xi;βk),

σ2
k

wi

)
,

Wi|Zik = 1 ∼ Gamma
(νk

2
,
νk
2

)
Zi|ri ∼ Mult (1;π1(ri;α), . . . , πK(ri;α)) .

This hierarchical representation involves the hidden variables Zi and

Wi facilitates the ML inference of model parameters Ψ via E(C)M.
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The t mixture of experts model

MLE of the TMoE model

Given an i.i.d sample of n observations, Ψ can be estimated by

maximizing the observed-data log-likelihood:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)tνk
(
y;µ(x;βk), σ

2
k, νk

)
.

⇒ EM algorithm and then describe an ECM extension

The complete data consist of the responses (y1, . . . , yn) and their

corresponding predictors (x1, . . . ,xn) and (r1, . . . , rn), as well as the

latent variables (w1, . . . , wn) (in the hierarchical representation) and

the latent labels (z1, . . . , zn).
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The t mixture of experts model

MLE of the TMoE model

⇒ The complete-data log-likelihood of Ψ is given by:

logLc(Ψ) = logL1c(α) +

K∑
k=1

[
logL2c(Ψk) + logL3c(νk)

]
,

where

logL1c(α)=

n∑
i=1

K∑
k=1

Zik log πk(ri;α),

logL2c(Ψk)=

n∑
i=1

Zik
[
− 1

2
log(2π)− 1

2
log(σ2

k)− 1

2
wid

2
ik

]
,

logL3c(νk)=
n∑
i=1

Zik
[
− log Γ

(νk
2

)
+
(νk

2

)
log
(νk

2

)
+
(νk

2
− 1
)

log(wi)−
(νk

2

)
wi
]
.
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The t mixture of experts model

MLE of the TMoE model: E-Step

E-Step Calculate the Q-function:

Q(Ψ ;Ψ (m)) = Q1(α;Ψ (m)) +

K∑
k=1

[
Q2(θk,Ψ

(m)) +Q3(νk,Ψ
(m))

]
,

where θk = (βTk , σ
2
k)
T and

Q1(α;Ψ (m)) =
n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α),

Q2(θk;Ψ (m)) =

n∑
i=1

τ
(m)
ik

[
− 1

2
log(2π)− 1

2
log(σ2

k)− 1

2
w

(m)
ik d2

ik

]
.

Q3(νk;Ψ (m)) =
n∑
i=1

τ
(m)
ik

[
− log Γ

(νk
2

)
+
(νk

2

)
log
(νk

2

)
−
(νk

2

)
w

(m)
ik +

(νk
2
− 1
)
e

(m)
1,ik

]
→ requires the following conditional expectations (analytic):

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

w
(m)
ik = EΨ (m) [Wi|yi, Zik = 1,xi, ri] ,

e
(m)
1,ik = EΨ (m) [log(Wi)|yi, Zik = 1,xi, ri] ·
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The t mixture of experts model

MLE of the TMoE model: M-Step

M-Step 1 Calculate α(m+1) by maximizing Q1(α;Ψ (m)) w.r.t α. ⇒
Iteratively via IRLS (16) as for the mixture of SNMoE.

M-Step 2 Calculate θ
(m+1)
k by maximizing Q2(θk;Ψ

(m)) w.r.t θk

β
(m+1)
k =

[ n∑
i=1

τ
(m)
ik w

(m)
ik xix

T
i

]−1 n∑
i=1

τ
(q)
ik w

(m)
ik yixi,

σ2
k
(m+1)

=
1∑n

i=1 τ
(m)
ik

n∑
i=1

τ
(m)
ik w

(m)
ik

(
yi − βTk

(m+1)
xi

)2
.

M-Step 3 Calculate ν
(m+1)
k by maximizing Q3(νk;Ψ

(m)) w.r.t νk
⇒ iteratively solve the following equation in νk:

−ψ
(νk

2

)
+log

(νk
2

)
+1+

∑n
i=1 τ

(m)
ik

(
log(w

(m)
ik )− w(m)

ik

)∑n
i=1 τ

(m)
ik

+ψ
(ν(m)

k + 1

2

)
−log

(ν(m)
k + 1

2

)
=0.

This scalar non-linear equation can be solved with a root finding
algorithm, such as Brent’s method (Brent, 1973).
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The skew t mixture of experts model

The skew t mixture of experts model

The proposed skew t mixture of experts (STMoE) model is a MoE

model in which the expert components have a skew-t density

The skew t distribution Azzalini and Capitanio (2003), can be

characterized as follows. Let U be an univariate standard skew-normal

variable U ∼ SN(0, 1, λ). Then, let W ⊥ U ∼ Gamma(ν2 ,
ν
2 ). A

random variable Y having the following representation:

Y = µ+ σ
U√
W

follows the skew t distribution ST(µ, σ2, λ, ν) with location µ, scale

σ, skewness λ and degrees of freedom ν, whose density is defined by:

f(y;µ, σ2, λ, ν) =
2

σ
tν(dy) Tν+1

(
λ dy

√
ν + 1

ν + d2y

)
where dy = y−µ

σ and tν(.) and Tν(.) respectively denote the pdf and

the cdf of the standard t distribution with degrees of freedom ν.
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The skew t mixture of experts model

The skew t mixture of experts (STMoE) model

The proposed skew t mixture of experts (STMoE) model extends the

univariate skew t mixture model Lin et al. (2007a), to the MoE framework.

A K-component mixture of skew t experts (STMoE) is defined by:

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α) ST(y;µ(x;βk), σ2
k, λk, νk) ·

Parameter vector: Ψ = (αT1 , . . . ,α
T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T where

Ψk = (βTk , σ
2
k, λk, νk)T is the parameter vector for the kth skew t expert

component whose density is defined by

f
(
y|x;µ(x;βk), σ2, λ, ν

)
=

2

σ
tν(dy(x)) Tν+1

(
λ dy(x)

√
ν + 1

ν + d2
y(x)

)
When the robustness parameter {νk} → ∞, the STMoE reduces to the

SNMoE. If the skewness parameter {λk} = 0, the STMoE reduces to the

TMoE. Moreover, when {νk} → ∞ and {λk} = 0, it approaches the NMoE.

⇒ The STMoE is more flexible as it generalizes the previously described

models to accommodate situations with asymmetry, heavy tails, and outliers.
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The skew t mixture of experts model

Representation of the STMoE model

Stochastic representation Suppose that conditional on a Multinomial

categorical variable Zi, Ei and Wi are independent univariate random

variables such that Ei ∼ SN(λzi) and Wi ∼ Gamma(
νzi
2 ,

νzi
2 ), and xi and

ri are given covariates. A variable Yi having the following representation:

Yi = µ(xi;βzi) + σzi
Ei√
Wi

is said to follow the STMoE distribution

Hierarchical representation

Yi|ui, wi, Zik = 1,xi ∼ N

(
µ(xi;βk) + δk|ui|,

1− δ2
k

wi
σ2
k

)
,

Ui|wi, Zik = 1 ∼ N

(
0,
σ2
k

wi

)
,

Wi|Zik = 1 ∼ Gamma
(νk

2
,
νk
2

)
Zi|ri ∼ Mult

(
1;π1(ri;α), . . . , πK(ri;α)

)
.

The variables Ui and Wi are hidden in this hierarchical representation
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The skew t mixture of experts model

Identifiability of the STMoE model

Ordered, initialized, and irreducible STMoEs are identifiable:

Ordered implies that there exist a certain ordering relationship such that

(βT1 , σ
2
1 , λ1, ν1)T ≺ . . . ≺ (βTK , σ

2
K , λK , νK)T ;

initialized implies that wK is the null vector, as assumed in the model

irreducible implies that if k 6= k′, then one of the following conditions holds:

βk 6= βk′, σk 6= σk′, λk 6= λk′ or νk 6= νk′.

⇒ Then, we can establish the identifiability of ordered and initialized irreducible

STMoE models by applying Lemma 2 of Jiang and Tanner (1999), which requires

the validation of the following nondegeneracy condition:

The set {ST(y;µ(x;β1), σ2
1 , λ1, ν1), . . . ,ST(y;µ(x;β4K), σ2

4K , λ4K , ν4K)}
contains 4K linearly independent functions of y, for any 4K distinct

quadruplet (µ(x;βk), σ2
k, λk, νk) for k = 1, . . . , 4K.

Thus, via Lemma 2 of Jiang and Tanner (1999) we have any ordered and

initialized irreducible STMoE is identifiable.
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The skew t mixture of experts model

MLE via the ECM algorithm

Maximize the observed-data log-likelihood:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)ST(y;µ(xi;βk), σ2
k, λk, νk) ·

⇒ This is performed iteratively by a dedicated ECM algorithm.

The complete-data log-likelihood:

logLc(Ψ) = logL1c(α) +

K∑
k=1

[
logL2c(θk) + logL3c(νk)

]
; θk = (βTk , σ

2
k, λk)T

logL1c(α) =
n∑

i=1

K∑
k=1

Zik log πk(ri;α),

logL2c(θk) =
n∑

i=1

Zik

[
− log(2π)− log(σ

2
k)−

1

2
log(1− δ2k)−

wi d
2
ik

2(1− δ2
k

)
+
wi ui δk dik

(1− δ2
k

)σk
−

wi u
2
i

2(1− δ2
k

)σ2
k

]
,

logL3c(νk) =
n∑

i=1

Zik

[
− log Γ

(
νk

2

)
+

(
νk

2

)
log

(
νk

2

)
+

(
νk

2

)
log(wi)−

(
νk

2

)
wi

]
·
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The skew t mixture of experts model

MLE via the ECM algorithm: E-Step

E-Step Calculates the Q-function, that is the conditional expectation of

the complete-data log-likelihood , given the observed data {yi,xi, ri}ni=1

and a current parameter estimation Ψ (m) given by:

Q(Ψ ;Ψ (m)) = Q1(α;Ψ (m)) +

K∑
k=1

[
Q2(θk,Ψ

(m)) +Q3(νk,Ψ
(m))

]
,

where

Q1(α;Ψ
(m)

) =
n∑

i=1

K∑
k=1

τ
(m)
ik

log πk(ri;α),

Q2(θk;Ψ
(m)

) =
n∑

i=1

τ
(m)
ik

[
− log(2πσ

2
k)−

1

2
log(1− δ2k)−

w
(m)
ik

d2ik

2(1− δ2
k

)
+
δk dik e

(m)
1,ik

(1− δ2
k

)σk
−

e
(m)
2,ik

2(1− δ2
k

)σ2
k

]
,

Q3(νk;Ψ
(m)

) =

n∑
i=1

τ
(m)
ik

[
− log Γ

(
νk

2

)
+

(
νk

2

)
log

(
νk

2

)
−
(
νk

2

)
w

(m)
ik

+

(
νk

2

)
e
(m)
3,ik

]
.
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The skew t mixture of experts model

MLE via the ECM algorithm: E-Step

⇒ The E-Step requires the following conditional expectations:

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

w
(m)
ik = EΨ (m) [Wi|yi, Zik = 1,xi, ri] ,

e
(m)
1,ik = EΨ (m) [WiUi|yi, Zik = 1,xi, ri] ,

e
(m)
2,ik = EΨ (m)

[
WiU

2
i |yi, Zik = 1,xi, ri

]
,

e
(m)
3,ik = EΨ (m) [log(Wi)|yi, Zik = 1,xi, ri] ·

These conditional expectations are calculated analytically except e
(m)
3,ik for

which I adopted a one-step-late (OSL) approach as in Lee and McLachlan

(2014), rather than using a Monte Carlo approximation as in Lin et al.

(2007a).

I also mention that, for the multivariate skew t mixture models, recently Lee

and McLachlan (2015) presented a series-based truncation approach, which

exploits an exact representation of this conditional expectation and which

can also be used here.
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The skew t mixture of experts model

MLE via the ECM algorithm: M-Step

CM-Step 1 update the mixing parameters α(m+1) by maximizing the function

Q1(α;Ψ (m)) by using IRLS. Then, for k = 1 . . . ,K,

CM-Step 2 Update the regression params (β
T (m+1)
k , σ2

k
(m+1)

):

β
(m+1)
k =

[ n∑
i=1

τ
(q)
ik w

(m)
ik xix

T
i

]−1
n∑
i=1

τ
(q)
ik

(
w

(m)
ik yi − e(m)

1,ikδ
(m+1)
k

)
xi,

σ2
k

(m+1)
=

∑n
i=1 τ

(m)
ik

[
w

(m)
ik

(
yi − βTk

(m+1)
xi
)2

− 2δ
(m+1)
k e

(m)
1,ik(yi − βTk

(m+1)
xi) + e

(m)
2,ik

]
2
(

1− δ2
k

(m)
)∑n

i=1 τ
(m)
ik

·

CM-Step 3 Update the skewness parameters λk by solving the following equation:

δk(1− δ2k)
n∑

i=1

τ
(m)
ik

+ (1 + δ
2
k)

n∑
i=1

τ
(m)
ik

d
(m+1)
ik

e
(m)
1,ik

σ
(m+1)
k

− δk
n∑

i=1

τ
(m)
ik

[
w

(m)
ik

d
2
ik

(m+1)
+

e
(m)
2,ik

σ2
k
(m+1)

]
= 0 ·

CM-Step 4 Update the degree of freedom νk by solving of the following equation:

−ψ
(νk

2

)
+ log

(νk
2

)
+ 1 +

∑n
i=1 τ

(m)
ik

(
e

(m)
3,ik − w

(m)
ik

)
∑n
i=1 τ

(m)
ik

= 0.
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Prediction, clustering and model selection with the non-normal
MoE

Prediction, clustering and model selection

Prediction Predicted response: ŷ = EΨ̂ (Y |r,x) with

EΨ̂ (Y |r,x)=
K∑
k=1

πk(r; α̂n)EΨ̂ (Y |Z = k,x),

VΨ̂ (Y |r,x)=
K∑
k=1

πk(r; α̂n)
[

(EΨ̂ (Y |Z = k,x))2 + VΨ̂ (Y |Z = k,x)
]
−
[
EΨ̂ (Y |r,x)

]2
,

where EΨ̂ (Y |Z = k,x) and VΨ̂ (Y |Z = k,x) are respectively the

component-specific (expert) means and variances.

Clustering of regression data Calculate the cluster label as

ẑi = arg
K

max
k=1

E[Zi|ri,xi; Ψ̂ ] = arg
K

max
k=1

πk(r; Ψ̂)fk
(
yi|ri,xi; Ψ̂

)
∑K
k′=1 πk′(r; α̂)fk′

(
yi|ri,xi; Ψ̂k′

)
Model selection The value of (K, p) can be computed by using BIC, ICL

Number of free parameters:

ηΨ = K(p+ 4)− 2 for the NMoE model,

ηΨ = K(p+ 5)− 2 for both the SNMoE and the TMoE models,

ηΨ = K(p+ 6)− 2 for the STMoE model.
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An illustrative example

Illustation on Bishop’s data set
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Figure: Fitting the the non-normal mixture of experts models (SNMoE, TNMoE,

STMoE) to the toy data set analyzed in Bishop and Svensén (2003): n = 250

values of input variables xi generated uniformly in (0, 1) and output variables yi
generated as yi = xi + 0.3 sin(2πxi) + εi, with εi drawn from a zero mean

Normal distribution with standard deviation 0.05.
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An illustrative example

Experiments: Robustness of the NNMoE

Experimental protocol as in Nguyen and McLachlan (2014)

Model | Outliers 0% 1% 2% 3% 4% 5%

N
M

o
E

NMoE 0.0001783 0.001057 0.001241 0.003631 0.013257 0.028966

SNMoE 0.0001798 0.003479 0.004258 0.015288 0.022056 0.028967

TMoE 0.0001685 0.000566 0.000464 0.000221 0.000263 0.000045

STMoE 0.0002586 0.000741 0.000794 0.000696 0.000697 0.000626

S
N

M
o

E

NMoE 0.0000229 0.000403 0.004012 0.002793 0.018247 0.031673

SNMoE 0.0000228 0.000371 0.004010 0.002599 0.018247 0.031674

TMoE 0.0000325 0.000089 0.000130 0.000513 0.000108 0.000355

STMoE 0.0000562 0.000144 0.000022 0.000268 0.000152 0.001041

T
M

o
E

NMoE 0.0002579 0.0004660 0.002779 0.015692 0.005823 0.005419

SNMoE 0.0002587 0.0004659 0.006743 0.015686 0.005835 0.004813

TMoE 0.0002529 0.0002520 0.000144 0.000157 0.000488 0.000045

STMoE 0.0002473 0.0002451 0.000173 0.000176 0.000214 0.000291

S
T

M
o

E

NMoE 0.000710 0.0007238 0.001048 0.006066 0.012457 0.031644

SNMoE 0.000713 0.0009550 0.001045 0.006064 0.012456 0.031644

TMoE 0.000279 0.0003808 0.000371 0.000609 0.000651 0.000609

STMoE 0.000280 0.0001865 0.000447 0.000600 0.000509 0.000602

Table: MSE between the estimated mean function and the true one

When there is no outliers (c = 0%), the error of the TMoE is less than
those of the other models, for the four situations, that is including the
case where the data are not generated according to it, which is somewhat
surprising. This includes the case where the data are generated according
to the NMoE model, for which the TMoE error is slightly less than the one
of the NMoE model. Then, it can be seen that when there is outliers, the
TMoE model outperforms the other models for almost all the situations,
except the one in which the data are generated according to the STMoE
model. When the data do not contain outliers and are generated from the
STMoE, this one indeed outperforms the NMoE and SNMoE models. For
the situation when there is no outliers and the data are generated
according to the TMoE or the STMoE, these two models may provide
quasi-identical results. In the case of presence of outliers in data generated
from the STMoE, this one outperforms the NMoE and SNMoE models for
all the situations, and outperforms the TMoE for the majority of
situations, namely when the number of the outliers is more than 2%. Also,
for all the situations with outliers, as expected, the TMoE and STMoE
models always provide the best results. These two models are indeed much
more robust to outliers compared to the normal and skew-normal ones
because the expert components in these two models follow a robust
distribution, that is the t distribution for the TMoE, and the skew t
distribution for the STMoE. The NMoE and SNMoE are sensitive to
outliers. When there is outliers, the SNMoE behavior is comparable to the
one of the NMoE. But the SNMoE is more adapted to skewed data
compared to the standard NMoE model. However, when the number of
outliers is increasing, the increase in the error of the NMoE and SNMoE
model is more pronounced compared to the one of the TMoE and STMoE
models. The error for both the TMoE and STMoE may indeed slightly
increase, remain stable or even decrease in some situations. This supports
the expected robustness of the TMoE and STMoE models.
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An illustrative example
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An illustrative example

Robustness of the NNMoE
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Figure: Fitted MoE to n = 500 observations generated according to the NMoE

with 5% of outliers (x; y = −2): NMoE fit (top), TMoE fit (bottom).
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An illustrative example

Robustness of the NNMoE
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Figure: Fitted MoE to n = 500 observations generated according to the NMoE

with 5% of outliers (x; y = −2): NMoE fit (top), STMoE fit (bottom).
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An illustrative example

Experiments

Application to two real-world data sets

Tone perception data set Recently studied by Bai et al. (2012) and Song

et al. (2014) by using robust regression mixture models based on,

respectively, the t distribution and the Laplace distribution.

To apply the proposed MoE models, we set the response yi(i = 1, . . . , 150)

as the “strech ratio” variables and the covariates xi = ri = (1, xi)
T where

xi is the “tuned” variable of the ith observation.

Temperature Anomaly Data

The data consist of n = 135 yearly measurements of the global annual

temperature anomalies (in degrees C) computed using data from land

meteorological stations for the period of 1882− 2012.

The response yi(i = 1, . . . , 135) is set as the temperature anomalies and the

covariates xi = ri = (1, xi)
T where xi is the year of the ith observation.

These data have been analyzed earlier by Hansen et al. (1999, 2001) and

recently by Nguyen and McLachlan (2014) by using the Laplace mixture of

linear experts (LMoLE).
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An illustrative example
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Figure: Fitting the MoLE to the tone data set studied by Bai et al. (2012) and

Song et al. (2014) by using robust regression mixture models based on,

respectively, the t distribution and the Laplace distribution: n = 150 pairs of

“tuned” predictors (x), and their corresponding “strech ratio” responses (y).
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An illustrative example

Model selection

NMoE SNMoE TMoE STMoE

K BIC AIC ICL BIC AIC ICL BIC AIC ICL BIC AIC ICL

1 1.8662 6.3821 1.8662 -0.6391 5.3821 -0.6391 71.3931 77.4143 71.3931 69.5326 77.0592 69.5326

2 122.8050 134.8476 107.3840 117.7939 132.8471 102.4049 204.8241 219.8773 186.8415 92.4352 110.4990 82.4552

3 118.1939 137.7630 76.5249 122.8725 146.9576 98.0442 199.4030 223.4880 183.0389 77.9753 106.5764 52.5642

4 121.7031 148.7989 94.4606 109.5917 142.7087 97.6108 201.8046 234.9216 187.7673 77.7092 116.8474 56.3654

5 141.6961 176.3184 123.6550 107.2795 149.4284 96.6832 187.8652 230.0141 164.9629 79.0439 128.7194 67.7485

Table: Choosing the number of experts K for the original tone perception data.

Model’s Robustness

I also examined the sensitivity of the MoE models to outliers based on this

real data set.

the same scenario used in Bai et al. (2012) and Song et al. (2014) (the last

and more difficult scenario) by adding 10 identical pairs (0, 4) to the original

data set as outliers in the y-direction, considered as high leverage outliers.
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An illustrative example

Robustness to outliers

⇒ the normal and the skew-normal mixture of experts provide almost

identical fits and are sensitive to outliers.

However, in both cases, compared to the normal regression mixture

result in Bai et al. (2012), and the Laplace regression mixture and the

t regression mixture results in Song et al. (2014), the fitted NMoE

and SNMoE model are affected less severely by the outliers.

This may be attributed to the fact that the mixing proportions here

are depending on the predictors, which is not the case in these

regression mixture models, namely the ones of Bai et al. (2012), and

Song et al. (2014).

The TMoE and the STMoE provide robust fits, which are

quasi-identical to the fit obtained on the original data without outliers.

Moreover, I notice that, as showed in Song et al. (2014), for this

situation with outliers, the t mixture of regressions fails; The fit is

affected severely by the outliers.
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Figure: Fitting MoLE to the tone data set with ten added outliers (0, 4).
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Figure: Fitting the MoLE models to the temperature anomalies data set.

Faicel Chamroukhi On some new Mixtures-of-Experts Models 44



An illustrative example

Both the TMoE and STMoE fits provide a degrees of freedom more

than 17, which tends to approach a normal distribution.

On the other hand, the regression coefficients are also similar to those

found by Nguyen and McLachlan (2014) who used a Laplace mixture

of linear experts.

Model selection : Except the result provided by AIC for the NMoE

model which provides overestimates the number of components, all

the others results provide evidence for two components in the data.

NMoE SNMoE TMoE STMoE

K BIC AIC ICL BIC AIC ICL BIC AIC ICL BIC AIC ICL

1 46.0623 50.4202 46.0623 43.6096 49.4202 43.6096 43.5521 49.3627 43.5521 40.9715 48.2347 40.9715

2 79.9163 91.5374 79.6241 75.0116 89.5380 74.7395 74.7960 89.3224 74.5279 69.6382 87.0698 69.3416

3 71.3963 90.2806 58.4874 63.9254 87.1676 50.8704 63.9709 87.2131 47.3643 54.1267 81.7268 30.6556

4 66.7276 92.8751 54.7524 55.4731 87.4312 41.1699 56.8410 88.7990 45.1251 42.3087 80.0773 20.4948

5 59.5100 92.9206 51.2429 45.3469 86.0207 41.0906 43.7767 84.4505 29.3881 28.0371 75.9742 -8.8817

Table: Choosing the number of expert components K for the temperature

anomalies data by using the information criteria BIC, AIC, and ICL. Underlined

value indicates the highest value for each criterion.
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