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m Data with possible atypical observations, skewed

NMoE TMoE STMoE

Figure: Fitting MoLE to the tone data set with ten outliers (0,4).

Objectives

m Derive robust models to fit at best the data and deal with possible
features like skewness, heavy tails
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An illustrative example
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Non-normal mixtures of experts

Problem

m Mixture of experts (MoE) is a popular framework for modeling heterogeneity in
data machine learning and statistics

m Investigate (MoE) for continuous data, in the case where the expert components
are non-normal, (do not follow the Normal distribution)

m Indeed , for a set of data containing a group or groups of observations with
asymmetric behavior, heavy tails or atypical observations, the use of normal
experts may be unsuitable and can unduly affect the fit

Objectives

m Overcome these (well-known) limitations of MoE modeling with the normal
distribution.

m We proposed three non-normal derivations including two robust mixture of experts
(MoE) models. < suitable to accommodate data which exhibit additional features
such as skewness, heavy-tails and which may be affected by atypical data
??Chamroukhi (2015)
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Mixture of experts for continuous data

m Mixture of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs,
1994) are used in regression, classification and clustering.

m Observed pairs of data (x,y) where y € R is the response for some
covariate € R? governed by a hidden categorical random variable Z

m MoE model the component membership variable Z as a logistic
function of some predictors r € R? (the gating network)

exp (alr)
K
> exp (e )
m MoE decompose the nonlinear regression model f(y|x) as:
K

flyle; @) = > mi(r;a) fu(yls; &),)

k=1
where fi(y|x; W) is the conditional density of a parametric regression
function and the 7's are covariate-varying mixing proportions.
m The model parameter vector: ¥ = (7rq,.... 751, %1, ... WwET
6
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The normal mixture of experts model and its MLE

m MokE for regression usually use normal experts fi(y|z; Py):

K
fylr,@; @) = ) m(r;a)N(y; plz; By), of)
k=1

where the component means are defined as parametric (non-)linear
regression functions u(x; 3;).

m Given an i.i.d sample of n observations (y1,...,yn) with the
covariates (x1,...,o,) and (ry,...,7,), the NMoE model
parameters are estimated by maximizing the log-likelihood

log L(¥ Zlogzﬂk i & y17 (xiﬁk)ﬂl%)
=1

by using the EM algorithm
m However, the normal distribution is not adapted to deal with
asymmetric and heavy tailed data. It is also known that the normal

dictribiitinn_ic cancitive tn autliarc
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Contribution

m | introduced three new non-normal mixture of experts (NNMoE) that
can better accommodate data exhibiting non-normal features,
including asymmetry, heavy-tails, and the presence of outliers.

m The models rely on distributions that generalize the normal

distribution:
1 the skew-normal MoE (SNMoE) [J-12]
2 the ¢t MoE (TMoE) [J-13]
3 the skew-t MoE (STMoE) [J-14]

m Dedicated E(C)M algorithms are developed to estimate the models
parameters by monotonically maximizing the observed data
log-likelihood.

m | describe how the presented models can be used in prediction in
regression as well as in model-based clustering of regression data.
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The skew-normal mixture of experts model

m The skew-normal mixture of experts (SNMoE) model uses the
skew-normal distribution as density for the expert components.

m The skew-normal distribution (Azzalini, 1985, 1986) with location
p € R, scale 02 € (0,00) and skewness A € R has density

Famot ) = 2o e (\25)

g o

where ¢(.) and ®(.) denote, respectively, the pdf and the cdf of the
standard normal distribution.

m When the skewness parameter A = 0, the skew-normal reduces to the
normal distribution.

m The presented skew-normal mixture of experts (SNMoE) extends the
skew-normal mixture model (Lin et al., 2007b) to the case of mixture
of experts framework, by considering conditional distributions for both
the mixing proportions and the means of the mixture components.
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The skew-normal mixture of experts model

m The SNMoE is therefore a MoE model with skew-normal experts and
is defined as follows. Let SN(1, 02, \) denotes a skew-normal
distribution with location parameter p, scale parameter ¢ and
skewness parameter \. A K-component SNMoE is then defined by:

K
fllr, o ®) = ) m(r; )SN(y; (s By), o i)

k=1
where each expert component k£ has indeed a skew-normal
distribution, whose density is defined by (1). The parameter vector of
the model is ¥ = (af ... ,aﬂ_l,lpa e W%)T with
v, = (6L, o2, \r)T the parameter vector for the kth skewed-normal
expert component.

m |t is obvious to see that if the skewness parameter A\, = 0 for each k,
the SNMoE model reduces to the NMoE model.
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The skew-normal mixture of experts model

The SNMoE model is characterized as follows.

m Stochastic representation of the SNMoE: A random variable Y] is
said to follow the SNMoE model if it has the following representation:

}/i = N(azlvﬁzz) + 5zl0'zl‘U7,| + \/ 1— 531 UziEz

where U and E be independent univariate random variables following
the standard normal distribution N(O 1) with pdf ¢(.), ]U\ denotes
the magnitude of U and 4., = 1+>\2 where Z; € {1,..., K} is a

categorical variable Z; which follows the multinomial distribution
Zilri ~ Mult(L; i (ri; @), ..., T (75 @)

where each of the probabilities 7, (7;; &) = P(Z; = z;|r;) is given by
the logistic function.
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The skew-normal mixture of experts model

The SNMoE model is characterized as follows.

m The stochastic representation of the SNMoE leads to the following
hierarchical representation

m Hierarchical representation of the SNMoE

Yilui, Zip, = 1,2y~ N(M(wi;ﬁk)+5k|ui’a(1*@%)@%)a
UilZiy =1 ~ NO,07),

Zilr; ~ Mult(L;mi(rya),...,mx(ri; o))

where Z;;. are the binary latent component-indicators such that

Ziw=1iff Zi =k, Z; = (Zsn, ..., Zix) and &}, = \/%
k

m This hierarchical incomplete data representation facilitates the
inference scheme by using the ECM algorithm.
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MLE via the ECM algorithm

m Given an observed i.i.d sample of n observations {(y;, z;,r;)};, the
parameter vector ¥ of the SNMoE model can be estimated by
maximizing the observed-data log-likelihood:

n K

log L(®) = "log > mx(ri; )SN (y: s By), 07, Ar) -

i=1 k=1

m = A dedicated Expectation Conditional Maximization (ECM)
algorithm

m The ECM algorithm (Meng and Rubin, 1993) is an EM variant that
mainly aims at addressing the optimization problem in the M-step of
the EM algorithm. In ECM, the M-step is performed by several
conditional maximization (CM) steps by dividing the parameter space
into sub-spaces. The parameter vector updates are then performed
sequentially, one coordinate block after another in each sub-space.
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Maximum likelihood estimation via the ECM
algorithm

m The complete-data log-likelihood of ¥, where the complete-data are
{yi, Ziy Ujy Tg, ri}’?:l’ is given by

K
log Lo(¥) = logLo(a)+ ) log Lc(¥y),
k=1
with
n K
log Le(a) = ZZZikIOgﬂ'k("'i?a)a
i=1 k=1

1
log L.(¥P)) = ZZ”“{ log(27) — log(o?) — 5 log(1 — 63)

_ dfk T 5k ik Ui _ UZQ :|
201-6%)  (1=0R)or  2(1—dF)oy

where d;;, = 7%_#57?;'3’“).
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ECM for the SNMoE: E-Step

E-Step calculates the Q-function

K
Q(w; ¥")=Elog Lo(¥)[{yi, xi, 7 iy ; ¥ | = Q1 (s @1™)) + ) Qo (@, ™)

k=1
with n K
Quas ™) = 3Nl logmi(ri; ),
i=1 k=1
m 1
Qo(W); W™y = Zrlk — log(27) — log(o}) — B log(1 — 63)
Ok dig e} e 2,

(1-62)op  2(1—02)02 201 - 62

where the required conditional expectations (analytic) are given by:

(m) = Egom [Zik|yi, zi, ri]
65"32 = Egwm [Ui|Zik =1Ly, iEz»T‘i] )
eg?lz = E!P(m) [U12|Zlk = 17yia T, ri] .
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CM-Step 1 Calculate o™ 1) = arg maxq Q1 (c; (™). does not exist in
closed form (Unlike in skew-normal (regression) mixtures)
The Iteratively Reweighted Least Squares (IRLS) algorithm:

02Q1 (c, ™)1 - Q1 (c, w(™)

(+1) _ () _ [ ] ‘
« @ 0a0aT a=al) 15/6" a=a)

Then, fork=1..., K,
CM-Step 2 Calculate B by maximizing Qo (@ ; &™)

m+1 m m
= [Sorimat] S (ol

CM-Step 3: Calculate Uz(m 2 by maximizing Qg (¥ ; ¥™)

Sty (o= A7) 28 el - B + 1)
2(1-02") s, i |

CM-Step 4 Calculate )\(m+1) by maximizing Q2(¥y; u'l(m)) Solution of:

m+1 n m n m m—+1 m
O’I%( )67“(1_613) i=1 1(k ) +(1+6k) z 1 z(k )(y'b £< )w'b) gilz
— G, Tl [e;i,l + (yi - ﬁf("‘+l)mi) ] = 0- root finding (Brent's method

i=1 "ik

2(m+1)
[ =

4 A=A
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m However, while the SNMoE model is tailored to model the skewness
in the data, it may be not adapted to handle data containing groups
or a group with heavy-tailed distribution.

m The NMoE and the SNMoE may thus be affected by outliers.

m = Handle the problem of sensitivity of normal mixture of experts to
outliers and heavy tails. | first propose a robust mixture of experts
modeling by using the ¢ distribution.
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The ¢ mixture of experts model

m The proposed ¢ mixture of experts (TMoE) model is based on the ¢
distribution, which is robust generalization of the normal distribution.

m The ¢t distribution is more robust than the normal distribution to
handle outliers in the data and to accommodate data with heavy
tailed distribution.

m This has been shown in terms of density modeling and cluster analysis
for multivariate data (Mclachlan and Peel, 1998; Peel and Mclachlan,
2000) as well as for univariate data (Lin et al., 2007a) and regression
mixtures (Bai et al., 2012; Wei, 2012; Ingrassia et al., 2012).

m The t-distribution with location i € R, scale 02 € (0,0) and degrees
of freedom v € (0, 00) has the probability density function

_ v+l

TN G I AR
f(ynu? ) )_ F(%) <1+ )

where d2 = (%)2 denotes the squared Mahalanobis distance
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The ¢ mixture of experts model

m The proposed ¢ mixture of experts model extends the ¢ mixture
model, first proposed by Mclachlan and Peel (1998); Peel and
Mclachlan (2000) for multivariate data, as well as the regression
mixture model using the t-distribution as in (Bai et al., 2012; Wei,
2012; Ingrassia et al., 2012) to the MoE framework.

m A K-component TMoE model is defined by:

K
Flylr, o ®) = Y m(ria) ty, (y;n(@s; By), ok, vi) -
k=1

m The parameter vector of the TMoE model is given by
U= (al,.. .,a%fl,!PlT, o OINT where W), = (Bg,az,uk)T
m When the robustness parameter v, — oo for each experts k, the
TMoE model approaches the NMoE model
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The ¢ mixture of experts model

m Stochastic representation for the TMoE Let £ ~ ¢(.). Suppose
that, conditional on the hidden variable Z; = z;, a random variable

Wi is distributed as Gamma(—*, 5*). Then, given the covariates
(x;,7;), a random variable Y; is said to follow the TMoE model if

VA

where the categorical variable Z;|r; is multinomial
m Hierarchical representation of the TMoE model

Yi = p(z;8,,) + o,

2
Yilwi, Zip =1, ~ N(N(-’”i;ﬂk)a Z}k> )

Vi U,

VVZ|ZZ]€ =1 ~ Gamma (?k, ?k‘)
Zilr; ~ Mult(Lmi(r;e),... . mx(ria)).

m This hierarchical representation involves the hidden variables Z; and

W; facilitates the ML inference of model parameters ¥ via E(C)M.
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MLE of the TMoE model

m Given an i.i.d sample of n observations, ¥ can be estimated by
maximizing the observed-data log-likelihood:

n K
log L(®) =Y log > m(ri; co)tuy (y; (s By), ok vi) -
=1 k=1

m = EM algorithm and then describe an ECM extension

m The complete data consist of the responses (y1,...,yy) and their
corresponding predictors (x1,...,xy) and (r1,...,7,), as well as the
latent variables (wy,...,wy,) (in the hierarchical representation) and
the latent labels (21, ..., 2,).
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MLE of the TMoE model

m = The complete-data log-likelihood of ¥ is given by:

K
logL.(¥) = logLi.(ax)+ Z log Loc(¥ ) + log Lac(vi)]
k=1
where
log Lic(a Zzzmlogﬂk (ri; ),
i=1 k=1
log Lac(¥) Z Zlk[ = log(2m) — log(o,%) — %wid?k],

o )5 20 1ot (3) (%) e (%) + (% - 1) o - (%) ],
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MLE of the TMoE model: E-Step

E-Step Calculate the Q-function:

K
Q™) = Qs B ™) + 3 [Q2(61, 7)) + Qa(u, #)]
k=1

where 8, = (Bf, O']%)T

Q1(o; w'™) ZZT(k ) log i (143 @),

and

i=1 k=1
m)y _ N~ [ 1 1 I
Q2019 ™) =37 [f 5 log(2m) — 5 log(0}) — 5 wf} dik].
=1

) = e sr (3) () vs(3) - (5) i + (3 -
i=1

— requires the following conditional expectations (analytic):

Ti(lzn) = Egom [Zitlyi, i, 7],
wz(l:l) = Egm Wilyi, Zix = 1, 24,74,
&™) = By log(W)lyi, Zix = 12,7 -
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MLE of the TMoE model: M-Step

M-Step 1 Calculate a(™1 by maximizing Ql(a;!P(m)) w.rta. =
Iteratively via IRLS (16) as for the mixture of SNMoE.

M-Step 2 Calculate 0}(€m+1) by maximizing QZ(Gk;!P(m)) w.r.t O
I(chrl) = [Z Tik wzk "3‘” } ZTm wzk yzsc,,

2
2(m+1) 7 (m41)
Ok = p (m Z Tik wzk Yi k Ti) -
Ez 1 zk: =1

M-Step 3 Calculate y,imﬂ) by maximizing Qg(l/k;!p(m)) w.r.t v
= iteratively solve the following equation in vg:

<3 Vk E:L 1 m (log( ) wi;n)) y£m>+1 B (m)+1
¥ ( 2 )-Hog( 2 >+1+ Z:L ) l(;n) +¢( 2 ) 105( 2

This scalar non-linear equation can be solved with a root finding
algorithm, such as Brent's method (Brent, 1973).
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The skew ¢t mixture of experts model

m The proposed skew ¢ mixture of experts (STMoE) model is a MoE
model in which the expert components have a skew-t density

m The skew ¢ distribution Azzalini and Capitanio (2003), can be
characterized as follows. Let U be an univariate standard skew-normal
variable U ~ SN(0, 1, A). Then, let W L U ~ Gamma(% A
random variable Y having the following representation:

27 2)

U
Y=p+o——

VW

follows the skew t distribution STy, 02, A, /) with location y, scale
o, skewness A and degrees of freedom v, whose density is defined by:

2 [v+1
. 2 _ =
f(y,,Uz,O',)\,V)—O_tu(d) v+1 <)\d V—i-d%)

where d, = “=£ and t,(.) and T,,(.) respectively denote the pdf and
the cdf of the standard t distribution with degrees of freedom v.

FA1cEL CHAMROUKHI On some new Mixtures-of-Experts Models 25



The skew ¢ mixture of experts (STMoE) model

m The proposed skew t mixture of experts (STMoE) model extends the
univariate skew ¢ mixture model Lin et al. (2007a), to the MoE framework.

m A K-component mixture of skew ¢ experts (STMoE) is defined by:

K
flylr,z®) = > m(r;e) ST(y; p(m; By), 07, Ak, Vi) -
k=1
m Parameter vector: ¥ = (] ,...,ak |, @], ... @)T where

@), = (8,07, M\, k)T is the parameter vector for the kth skew t expert
component whose density is defined by

2 v+1
Fyla; (s By), 0%, A v) = = t(dy(@)) Tos (A dy(z) I/erﬁ(w)>
m When the robustness parameter {1} — oo, the STMoE reduces to the
SNMOoE. If the skewness parameter {\;} = 0, the STMoE reduces to the

TMoE. Moreover, when {vi} — 0o and {A\;} = 0, it approaches the NMoE.

m = The STMoE is more flexible as it generalizes the previously described
models to accommodate situations with asymmetry, heavy tails, and outliers.
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Representation of the STMoE model

m Stochastic representation Suppose that conditional on a Multinomial
categorical variable Z;, E; and W; are independent univariate random
variables such that E; ~ SN().,) and W; ~ Gamma(=3t, “2t), and @; and
T; are given covariates. A variable Y; having the following representation:

%

Y;' = Tis 2, + 02,
w(xi; B.,) + o, N
is said to follow the STMoE distribution

m Hierarchical representation

1—&0

2)
k|
W;

Yilui,wi, Zi = 1,@;  ~ N(#(mi;ﬁk)+5k\ui|,

2
Vo)
ws

vk U
WilZik=1 ~ Gamma(?k,?k)

Zilr; ~ Mult(l;m(m; a),.. .,7TK(1"¢;OL)).

Uilwi, Zir, = 1

2

The variables U; and W; are hidden in this hierarchical representation
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Identifiability of the STMoE model

Ordered, initialized, and irreducible STMoEs are identifiable:

m Ordered implies that there exist a certain ordering relationship such that
T T
(/61 7U%a)‘laV1)T <...= (BK)UiaAKaVK)T;

m initialized implies that wg is the null vector, as assumed in the model

m irreducible implies that if & = k7, then one of the following conditions holds:

B # Brr Ok F Okry Ak 7 Ay OF Vi 7 Vg

= Then, we can establish the identifiability of ordered and initialized irreducible
STMoE models by applying Lemma 2 of Jiang and Tanner (1999), which requires
the validation of the following nondegeneracy condition:

m The set {ST(y7 M(w7 /31)7 0'%7 )‘17 V1)7 ) ST(y7 M(ma /64K)7 UZK’ )‘4K7 V4K)}
contains 4K linearly independent functions of y, for any 4K distinct
quadruplet (u(z; By), 02, Mg, vg) for k=1,... 4K.

m Thus, via Lemma 2 of Jiang and Tanner (1999) we have any ordered and
initialized irreducible STMoE is identifiable.
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MLE via the ECM algorithm

m Maximize the observed-data log-likelihood:
log L(¥ Zlongk ri;0)ST(y; (i3 Br), s Moy Vi) -
=1

m = This is performed iteratively by a dedicated ECM algorithm.

m The complete-data log-likelihood:

K

log Le(®) =log Lic(ct) + Y _ [1og Lac(8x) + log Lac(vi)]; 0 = (BY, 07, )"
k=1

n K
log Lic(a) = Z ik log T (145 @),
i=1k=1

" 1 w; d? w; w; 0 d; w; u?
2 2 T ik i Wi Ok ik i Uy
log L2c(8y) = D Zis | — log(2m) — log(o) — = log(1 — 6}) — -
i=1 [ 2 2(1 - 63) (1—-63)ox 2(1 - 5%)0’%]

log Lse(vy) = gzm[f log T (%) + (%") log (%") + (%’“) log(w;) — (%’“) w;] -

i
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MLE via the ECM algorithm: E-Step

m E-Step Calculates the Q-function, that is the conditional expectation of
the complete-data log-likelihood , given the observed data {y;, ;, 7}
and a current parameter estimation g(m) given by:

K
Q(g,;!p(m)) Q1 (o !p(m) +Z [QQ (65, !p(m)) + Qs(u, !I/(m))}
k=1

where

n K
Q@™ = > Z ™ log (v @),
i=1k=1

o (m) 42 51 din e(n_z) €<m)
0, w(my _ (m _ log(2 _ 71 162y - Wik %ik c Yk ©1,ik 2,ik
Q2(0k; )= Z og(2m}) og( ) 20-62) | (1-D)ox 20— 62)o2

Qs w(™) = Zf(m) { logF< ) <V2 >log(y2k> B (%) RS ( 2 ) gm”)j i
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MLE via the ECM algorithm: E-Step

m = The E-Step requires the following conditional expectations:
(m) _

Tae = Egow [Ziklyi, @i 7],

L(/:n) = Egom [Wilyi, Zik = 1, @i, 7i]
eﬁ"fi = Egon [Wililyi, Zir, = 1, @i, 7],
") = Egon [WiUPlys Zin = 1,2i,74]
e = Egom log(Wi)lys, Zin = 1,@i,74]

m These conditional expectations are calculated analytically except eg’;,i for

which | adopted a one-step-late (OSL) approach as in Lee and McLachlan
(2014), rather than using a Monte Carlo approximation as in Lin et al.
(2007a).

m | also mention that, for the multivariate skew ¢ mixture models, recently Lee
and McLachlan (2015) presented a series-based truncation approach, which
exploits an exact representation of this conditional expectation and which
can also be used here.
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MLE via the ECM algorithm: M-Step

m CM-Step 1 update the mixing parameters o™tV by maximizing the function
Q1(a; &™) by using IRLS. Then, for k=1..., K,

m CM-Step 2 Update the regression params (ﬂf(m+1)7o,§(m+l)):

;Cmm:[zngq) 0m) g } ZT<q) (w (™), — & 1)5(m+1>)
=1

(m) T (m+1) (m+1) _(m) T (m+1) (m)
2(m+1) Zz 1 zk |: Wiy (yz k 7«) 25 € zk( ﬂ i)+e2,ik]

( 52(m)) S TZ(;M

m CM-Step 3 Update the skewness parameters \j; by solving the following equation:
g(m+1) (m) n (m)

(m) (m) dik €1,ik (m) [ (m) ;2 (m+1) €2, ik -
k(1 — 5% Z Tk T ( Z W Ok Z Tik [wik‘ i + 2(m+1>] =0
Tk Tk

m CM-Step 4 Update the degree of freedom vy, by solving of the following equation:

v Sy i (efm —wi)
v () +los () +1+ n =0
21 Tik
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Prediction, clustering and model selection

m Prediction Predicted response: §j = Eg (Y|r, ) with

¢ (Yr, ) Zwkran ; (YZ =k, x),

& (Y|r, @) Zm (ri6n)[(Eg(Y]Z = k,2))* + Vg (YV|Z = k,2)] — [Eg(Y|r,z)

where IE‘I;(Y\Z =k,x) and Vg (Y|Z = k,x) are respectively the
component-specific (expert) means and variances.

m Clustering of regression data Calculate the cluster label as

K e (r; ) fr (yi\m,mi;ﬁl)
% = argmax E[Z;|r;, x;; @] = arg miax
k=1 k=1 Zk, 1 T (75 a)fk,(yl|m,a:l,wk,)
m Model selection The value of (K, p) can be computed by using BIC, ICL
Number of free parameters:
ne = K(p+4) — 2 for the NMoE model,
ne = K(p+ 5) — 2 for both the SNMoE and the TMoE models,
ng = K(p+ 6) — 2 for the STMoE model.
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lllustation on Bishop’s data set

STHoE

SNuoE THoe

Miing probabities

Figure: Fitting the the non-normal mixture of experts models (SNMoE, TNMoE,
STMoE) to the toy data set analyzed in Bishop and Svensén (2003): n = 250
values of input variables x; generated uniformly in (0,1) and output variables y;
generated as y; = x; + 0.3sin(27x;) + €;, with ¢; drawn from a zero mean
Normal distribution with standard deviation 0.05.
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Experiments: Robustness of the NNMoE

Experimental protocol as in Nguyen and McLachlan (2014)

Model | Outliers 0% 1% 2% 3% 4% 5%

NMoE 0.0001783 0.001057 0.001241 0.003631 0.013257 0.028966
8 SNMoE 0.0001798 0.003479 0.004258 0.015288 0.022056 0.028967
g TMoE 0.0001685 0.000566 0.000464 0.000221 0.000263 0.000045

STMoE 0.0002586 0.000741 0.000794 0.000696 0.000697 0.000626
W NMoE 0.0000229 0.000403 0.004012 0.002793 0.018247 0.031673
§° SNMoE 0.0000228 0.000371 0.004010 0.002599 0.018247 0.031674
= TMoE 0.0000325 0.000089 0.000130 0.000513 0.000108 0.000355
Y STMoE 0.0000562 0.000144 0.000022 0.000268 0.000152 0.001041

NMoE 0.0002579 0.0004660 0.002779 0.015692 0.005823 0.005419
8 SNMoE 0.0002587 0.0004659 0.006743 0.015686 0.005835 0.004813
E TMoE 0.0002529 0.0002520 0.000144 0.000157 0.000488 0.000045

STMoE 0.0002473 0.0002451 0.000173 0.000176 0.000214 0.000291
W NMoE 0.000710 0.0007238 0.001048 0.006066 0.012457 0.031644
2 SNMoE 0.000713  0.0009550 0.001045 0.006064 0.012456 0.031644
= TMoE 0.000279  0.0003808 0.000371 0.000609 0.000651 0.000609
Y STMoE 0.000280 0.0001865 0.000447 0.000600 0.000509 0.000602

Table: MSE between the estimated mean function and the true one
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Figure: Fitted MoE to n = 500 observations generated according to the NMoE
with 5% of outliers (x;y = —2): NMoE fit (top), TMoE fit (bottom).
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Figure: Fitted MoE to n = 500 observations generated according to the NMoE
with 5% of outliers (x;y = —2): NMoE fit (top), STMoE fit (bottom).
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Experiments

Application to two real-world data sets

Tone perception data set Recently studied by Bai et al. (2012) and Song
et al. (2014) by using robust regression mixture models based on,
respectively, the ¢ distribution and the Laplace distribution.

To apply the proposed MoE models, we set the response y;(i = 1,...,150)
as the “strech ratio” variables and the covariates x; = r; = (1,2;)7 where
x; is the “tuned” variable of the ith observation.

Temperature Anomaly Data

The data consist of n = 135 yearly measurements of the global annual
temperature anomalies (in degrees C) computed using data from land
meteorological stations for the period of 1882 — 2012.

The response y;(i = 1,...,135) is set as the temperature anomalies and the
covariates x; = r; = (1,:cz-)T where z; is the year of the ith observation.

These data have been analyzed earlier by Hansen et al. (1999, 2001) and
recently by Nguyen and McLachlan (2014) by using the Laplace mixture of

linear exnerts (1 Mol F)
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Figure: Fitting the MoLE to the tone data set studied by Bai et al. (2012) and
Song et al. (2014) by using robust regression mixture models based on,
respectively, the t distribution and the Laplace distribution: n = 150 pairs of

“tuned” predictors (z), and their corresponding “strech ratio” responses (y).
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Model selection

NMoE

[

SNMoE

TMoE

STMoE

[ BIC AIC

ICL

l

BIC

AIC

ICL

l
l

BIC

AIC

ICL

l
l

BIC

AlC

ICL

1.8662  6.3821
122.8050 134.8476
118.1939 137.7630
121.7031 148.7989

K
1
2
3
4
5 1141.6961 176.3184

1.8662
107.3840
76.5249
94.4606
123.6550

-0.6391
117.7939

5.3821
132.8471

-0.6391
102.4049

71.3931
204.8241

122.8725
109.5917
107.2795

146.9576
142.7087
149.4284

98.0442
97.6108
96.6832

199.4030
201.8046
187.8652

77.4143
219.8773
223.4880

234.9216

230.0141

71.3931
186.8415
183.0389

187.7673

164.9629

69.5326
92.4352

77.0592
110.4990

69.5326
82.4552

77.9753
77.7092
79.0439

106.5764
116.8474
128.7194

52.5642
56.3654
67.7485

Table: Choosing the number of experts K for the original tone perception data.

Model’s Robustness

m | also examined the sensitivity of the MoE models to outliers based on this
real data set.

m the same scenario used in Bai et al. (2012) and Song et al. (2014) (the last
and more difficult scenario) by adding 10 identical pairs (0,4) to the original

data set as outliers in the y-direction, considered as high leverage outliers.
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Robustness to outliers

m = the normal and the skew-normal mixture of experts provide almost
identical fits and are sensitive to outliers.

m However, in both cases, compared to the normal regression mixture
result in Bai et al. (2012), and the Laplace regression mixture and the
t regression mixture results in Song et al. (2014), the fitted NMoE
and SNMoE model are affected less severely by the outliers.

m This may be attributed to the fact that the mixing proportions here
are depending on the predictors, which is not the case in these
regression mixture models, namely the ones of Bai et al. (2012), and
Song et al. (2014).

m The TMoE and the STMoE provide robust fits, which are
quasi-identical to the fit obtained on the original data without outliers.

m Moreover, | notice that, as showed in Song et al. (2014), for this
situation with outliers, the t mixture of regressions fails; The fit is
affected severely by the outliers.
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Figure: Fitting MoLE to the tone data set with ten added outliers (0,4).
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Figure: Fitting the MoLE models to the temperature anomalies data set.
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m Both the TMoE and STMoE fits provide a degrees of freedom more
than 17, which tends to approach a normal distribution.

m On the other hand, the regression coefficients are also similar to those
found by Nguyen and McLachlan (2014) who used a Laplace mixture
of linear experts.

m Model selection : Except the result provided by AIC for the NMoE
model which provides overestimates the number of components, all
the others results provide evidence for two components in the data.

NMoE SNMoE TMoE STMoE
[BIC___AIC ICL_| BIC ___AIC ICL_| BIC ___AIC ICL_| BIC ___AIC ICL

46.0623 50.4202 46.0623 | 43.6096 49.4202 43.6096 | 43.5521 49.3627 43.5521 | 40.9715 48.2347 40.9715
79.9163 91.5374 79.6241 | 75.0116 89.5380 74.7395 | 74.7960 89.3224 74.5279 | 69.6382 87.0698 69.3416
71.3963 90.2806 58.4874 | 63.9254 87.1676 50.8704 | 63.9709 87.2131 47.3643 | 54.1267 81.7268 30.6556
66.7276 92.8751 54.7524 | 55.4731 87.4312 41.1699 | 56.8410 88.7990 45.1251 | 42.3087 80.0773 20.4948
59.5100 92.9206 51.2429 | 45.3469 86.0207 41.0906 | 43.7767 84.4505 29.3881 | 28.0371 75.9742 -8.8817

K
1
2
3
4
5

Table: Choosing the number of expert components K for the temperature
anomalies data by using the information criteria BIC, AIC, and ICL. Underlined
value indicates the highest value for each criterion.
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