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Context

Unsupervised learning for cluster analysis

A latent data modeling framework

Observed data: (x1, . . . ,xn) a sample of n multidimensional individuals xi in
Rd .

Hidden variables: z= (z1, . . . ,zn) the hidden cluster labels (zi ∈ {1, . . . ,K }

K possibly unknown number of clusters clusters

Objective
Infer the hidden structure from the data ⇒ find a partition of the unlabeled
dataset into a finite number of clusters

⇒ Learn a probabilistic generative model

Chose the best possibly unknown number of clusters
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Model-based clustering

Model-based clustering
The aim of clustering in general is to find a partition of an unlabeled dataset
into clusters (groups)

the data within the same group tend to be more similar, in the sense of a
chosen dissimilarity measure, to one another as compared to the data
belonging to different groups

Model-based clustering agenerally used for multidimensional data, is based
on the finite mixture model formulation b

They are one of the most popular and successful approaches in cluster
analysis.

aMcLachlan and Basford (1988); Banfield and Raftery (1993a); Fraley and Raftery (2002)
bMcLachlan and Peel. (2000)
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Clustering via finite mixture models

⇒ This approach is known as the model-based clustering

The clustering problem is reformulated as a density estimation problem

the data probability density function is assumed to be a mixture density,
each component density being associated with a cluster.

⇒ The problem of clustering becomes the one of estimating the parameters
of the assumed mixture model (e.g, estimating the means and the
covariances for Gaussian mixtures).
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Mixture approach/Classification approach
Two main approaches are possible. The former is refereed to as the mixture
approach or the estimation approach and the latter is known as the classification
approach.

1 The mixture approach consists of two steps :
1 The parameters of the mixture density are estimated by maximizing the

observed-data likelihood generally via the EM algorithm
2 After performing the probability density estimation, the posterior

probabilities τik are then used to determine the cluster memberships
through the MAP principle.

2 The classification approach

consists in optimizing a classification likelihood function which is (can
be) the complete-data likelihood by using the CEM algorithm Celeux
and Govaert (1992).
The cluster memberships and the model parameters are estimated
simultaneously as the learning proceeds.
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Data modeling using finite mixture models

Finite mixture models are an example of latent variable models

widely used in probabilistic machine learning and pattern recognition.

The finite mixture model decomposes the density of the observed data x
into a weighted linear combination of K component densities.

The mixture model allows for placing K component densities in the input
space to approximate the true density.

⇒ Mixtures provide a natural generalization of the simple parametric density
model which is global, to a weighted sum of these models, allowing local
adaptation to the density of the data in the input space.
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Model definition

Let z represent a discrete random variable which takes its values in the finite
set Z = {1, . . . ,K }.
In a general setting, the mixture density of x is

f (x;Ψ) =
K∑

k=1
p(z = k)f (x|z = k;Ψk)

=
K∑

k=1
πk fk(x;Ψk),

πk = p(z = k): the probability that a randomly chosen data point was
generated by component k. Referred to as mixing proportions
πk ≥ 0 ∀k, and ∑K

k=1πk = 1.
f1, . . . , fK are the component densities.
Each fk typically consists of a relatively simple parametric model
p(x|z = k;Ψk) (such as a Gaussian distribution with parameters
Ψk = (µk ,Σk)).
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The finite mixture model

Graphical model representation of
the finite mixture model

Generative model

zi |π ∼ Mult(.|π)
xi |zi ,θ ∼ f (.|θzi )
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Parameter estimation for the mixture model
Common estimation methods

the maximum likelihood (ML) estimation approach

the Maximum A Posteriori (MAP) (Bayesian) estimation where a prior
distribution is assumed for the model parameters

The ML approach maximizes the observed-data likelihood maximizing the
observed data likelihood p(X|θ)
⇒ The used algorithm is the Expectation-Maximization (EM) algorithm a.

The MAP maximizes the posterior parameter distribution
p(θ|X)= p(θ)p(X|θ), p(θ) being a prior parameter distribution

⇒ The MAP can still be performed by EM in some cases b and is in general
performed by Markov Chain Monte Carlo (MCMC) c

aDempster et al. (1977); McLachlan and Krishnan (1997)
bFraley and Raftery (2007)
cRichardson and Green (1997)Bensmail et al. (1997)Bensmail and Meulman (2003) Ormoneit and Tresp

(1998)Stephens (1997, 2000)
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Parameter estimation for the mixture model

Assume we have an i.i.d sample X= (x1, . . . ,xn).
The observed-data log-likelihood of Ψ is:

L (Ψ;X) = log
n∏

i=1
p(xi ;Ψ)

=
n∑

i=1
log

K∑
k=1

πk fk
(
xi ;Ψk

)
.

the log-likelihood to be maximized results in a nonlinear function due to the
logarithm of the sum
very difficult to maximize in a closed form
⇒ maximize it (locally) using iterative procedures such as gradient ascent, a
Newton Raphson procedure or the Expectation-Maximization (EM)
algorithm
⇒ The EM algorithm is the widely technique for mixture models.
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EM algorithm

a broadly applicable approach to the iterative computation of maximum
likelihood estimates in the framework of latent data models.

In particular, the EM algorithm simplifies considerably the problem of fitting
finite mixture models by maximum likelihood.

an iterative algorithm where each iteration consists of two steps:
1 the Expectation step (E-step): computes the expectation of the

complete-data log-likelihood, given the observations X= (x1, . . . ,xn)
and a current value Ψ(q) of the model parameter

2 the Maximization step (M-step): Maximize the expected complete-data
log-likelihood over the parameter space
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EM algorithm

let X= (x1, . . . ,xn) be a set of n i.i.d observations with xi ∈Rd

z= (z1, . . . ,zn) denote the corresponding unobserved (missing) labels with
zi ∈Z = {1, . . . ,K }.
The complete-data: (X,z)= ((x1,z1), . . . ,(xn,zn))

The complete-data log-likelihood:

Lc(Ψ;X,z) = logp((x1,z1), . . . ,(xn,zn);Ψ)= log
n∏

i=1
p(xi ,zi ;Ψ)

=
n∑

i=1
log

K∏
k=1

[
p(zi = k)p(x|zi = k;Ψk)

]zik

=
n∑

i=1

K∑
k=1

zik logπk fk
(
xi ;Ψk

)
,

where zik = 1 if zi = k (i.e, when xi is generated by the kth component
density) and zik = 0 otherwise.
this log-likelihood depends on the unobservable data z !.
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EM algorithm

The EM algorithm starts with an initial parameter Ψ(0) and iteratively
alternates between the two following steps until convergence:

E-step (Expectation): computes the expectation of the complete-data
log-likelihood given the observations X and the current value Ψ(q) of the
parameter Ψ (q being the current iteration).

Q(Ψ,Ψ(q)) = E
[
Lc(Ψ;X,z)|X;Ψ(q)

]
=

n∑
i=1

K∑
k=1

E[zik |xi ,Ψ(q)] logπk fk
(
xi ;Ψk

)
=

n∑
i=1

K∑
k=1

p(zik = 1|xi ;Ψ
(q)) logπk fk

(
xi ;Ψk

)
=

n∑
i=1

K∑
k=1

τ
(q)
ik logπk fk

(
xi ;Ψk

)
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EM algorithm

where

τ
(q)
ik = p(zi = k |xi ;Ψ

(q))=
πk fk

(
xi ;Ψ

(q)
k

)
∑K
`=1π`f`

(
xi ;Ψ

(q)
`

)
is the posterior probability that xi originates from the kth component
density.

In E[zik |xi ,Ψ(q)], we used the fact that conditional expectations and
conditional probabilities are the same for the indicator binary-valued
variables zik : E[zik |xi ,Ψ(q)]= p(zik = 1|xi ,Ψ(q)).

⇒ From the expression of Q(Ψ,Ψ(q)), we can see that this step simply
requires the computation of the posterior probabilities τ(q)ik .
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EM algorithm

M-step (Maximization): updates the estimate of Ψ by the value Ψ(q+1) of Ψ
that maximizes the Q-function Q(Ψ,Ψ(q)) with respect to Ψ over the parameter
space Ω:

Ψ(q+1) = argmax
Ψ∈Ω

Q(Ψ,Ψ(q)).

We can write

Q(Ψ,Ψ(q))=Qπ(π1, . . . ,πK ,Ψ(q))+
K∑

k=1
QΨk (Ψk ,Ψ(q))

where
Qπ(π1, . . . ,πK ,Ψ(q))=

n∑
i=1

K∑
k=1

τ
(q)
ik logπk

QΨk (Ψk ,Ψ(q)) =
n∑

i=1
τ
(q)
ik log fk

(
xi ;Ψk

)
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M-Step

⇒ the maximization of the function Q(Ψ;Ψ(q)) w.r.t Ψ can be performed by
separately maximizing Qπ with respect to the mixing proportions (π1, . . . ,πK ) and
QΨk with respect to parameters Ψk for each of the K components densities.

The function Qπ is maximized with respect to (π1, . . . ,πK ) ∈ [0,1]K subject
to the constraint ∑

k πk = 1. This maximization is done in a closed using
Lagrange multipliers form and leads to

π
(q+1)
k =

∑n
i=1τ

(q)
ik

n =
n(q)k
n ,

n(q)k can be viewed as the expected cardinal number of the subpopulation k
estimated at iteration q.

The update of Ψk depends on the form of the density fk (e.g., Gaussian)
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EM for Gaussian mixture models (GMMs)
The finite Gaussian mixture density is defined as::

f (xi ;Ψ)=
K∑

k=1
πkN (xi ;µk ,Σk)
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Figure : An example of a three-component Gaussian mixture density in R2.
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The finite Gaussian Mixture Model (GMM)

Graphical model representation of
the finite GMM

Generative model

zi |π ∼ Mult(.|π)
xi |zi = k ,θ ∼ N (.|θk)

θk = (µk ,Σk)
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EM for GMMs

The observed-data log-likelihood of Ψ for the Gaussian mixture model:

L (Ψ;X)=
n∑

i=1
log

K∑
k=1

πkN
(
xi ;µk ,Σk

)
.

The complete-data log-likelihood of Ψ for the Gaussian mixture model:

Lc(Ψ;X,z)=
n∑

i=1

K∑
k=1

zik logπkN
(
xi ;µkΣk

)
.

EM:

Starts with an initial parameter Ψ(0) = (π
(0)
1 , . . . ,π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K ) where

Ψ
(0)
k = (µ

(0)
k ,Σ

(0)
k )
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E-Step for GMMs

the expected complete-data log-likelihood:

Q(Ψ,Ψ(q)) = E
[
Lc(Ψ;X,z)|X;Ψ(q)

]
=

n∑
i=1

K∑
k=1

τ
(q)
ik logπk +

n∑
i=1

K∑
k=1

τ
(q)
ik logN (xi ;µk ,Σk) .

⇒ This step therefore computes the posterior probabilities

τ
(q)
ik = p(zi = k |xi ,Ψ(q))=

πkN (xi ;µ
(q)
k ,Σ

(q)
k )∑K

`=1π`N (xi ;µ
(q)
`

,Σ
(q)
`

)

that xi originates from the kth component density.
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M-Step for GMMs

update the parameter Ψ by the value Ψ(q+1) of Ψ that maximizes the
function Q(Ψ,Ψ(q)) w.r.t Ψ over the parameter space Ω.

µ
(q+1)
k = 1

n(q)k

n∑
i=1

τ
(q)
ik xi ,

Σ
(q+1)
k = 1

n(q)k

n∑
i=1

τ
(q)
ik (xi −µ(q+1))(xi −µ(q+1))T .

The E- and M-steps are alternated iteratively until the change in the log
likelihood value are less than some specified threshold.
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Algorithm 1 Pseudo code of the EM algorithm for GMMs.
Inputs: Data set (x1, . . . ,xn) and # of clusters K

fix a threshold ε> 0 ; set q ← 0 (iteration)
Initialize: Ψ(0) = (π

(0)
1 , . . . ,π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K ) with Ψ(0)

k = (µ
(0)
K ,Σ

(0)
K )

while increment in log-likelihood > ε do
E-step:
for k = 1, . . . ,K do

Compute τ(q)ik = πkN (xi ;µ
(q)
k ,Σ

(q)
k )∑K

`=1π`N (xi ;µ
(q)
`

,Σ
(q)
`

)
for i = 1, . . . ,n

end for
M-step:
for k = 1, . . . ,K do

Compute π(q+1)k =
∑n

i=1 τ
(q)
ik

n
Compute µ(q+1)k = 1

n(q)k

∑n
i=1 τ

(q)
ik xi

Compute Σ(q+1)k = 1
n(q)k

∑n
i=1 τ

(q)
ik (xi −µ(q+1))(xi −µ(q+1))T

end for
q ← q+1

end while
Outputs: ψ̂=Ψ(q) ; τ̂ik = τ(q)ik (a fuzzy partition of the data)
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Initialization Strategies and stopping rules for EM

The initialization of EM is a crucial point since it maximizes locally the
log-likelihood.

if the initial value is inappropriately selected, the EM algorithm may lead to
an unsatisfactory estimation.

The most used strategy: use several EM tries and select the solution
maximizing the log-likelihood among those runs.

For each run of EM, one can initialize it
randomly
by Computing a parameter estimate from another clustering algorithm
such as K -means, Classification EM, Stochastic EM ...
with a few number of steps of EM itself.

Stop EM when the relative increase of the log-likelihood between two
iterations is below a fixed threshold |L (q+1)−L (q)

L (q) | ≤ ε or when a predefined
number of iterations is reached.
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EM properties

The EM algorithm always monotonically increases the observed-data
log-likelihood.
The sequence of parameter estimates generated by the EM algorithm
converges toward at least a local maximum or a stationary value of the
incomplete-data likelihood function.
numerical stability
simplicity of implementation
reliable convergence
In general, both the E- and M-steps will have particularly simple forms when
the complete-data probability density function is from the exponential family;
Some drawbacks: EM is sometimes very slow to converge especially for high
dimensional data;
in some problems, the E- or M-step may be analytically intractable (but this
can be tackled by using EM extensions)
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EM extensions

The EM variants mainly aim at:
1 increasing the convergence speed of EM and addressing the

optimization problem in the M-step
2 computing the E-step when it is intractable.

In the first case, one can speak about deterministic algorithms :
e.g., Incremental EM (IEM)
Gradient EM
Generalized EM (GEM) algorithm
Expectation Conditional Maximization (ECM)
Expectation Conditional Maximization Either (ECME)

In the second case, one can speak about stochastic algorithms:
e.g., Monte Carlo EM (MCEM)
Stochastic EM (SEM)
Simulated Annealing EM (SAEM)
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Classification EM (CEM) algorithm

we saw that EM computes the maximum likelihood (ML) estimate of a
mixture model.
The Classification EM (CEM) algorithm Celeux and Govaert (1992)
estimates both the mixture model parameters and the classes’ labels by
maximizing the completed-data log-likelihood Lc(Ψ;X,z)= logp(X,z;Ψ)
start with an initial parameter Ψ(0)

1 Step 1: Compute the missing data z(q+1) given the observations and the
current estimated model parameters Ψ(q):

z(q+1) = argmax
z∈Z n

Lc(Ψ
(q);X,z)

2 Step 2: Compute the model parameters update Ψ(q+1) by maximizing the
complete-data log-likelihood given the current estimation of the missing
data z(q+1):

Ψ(q+1) = argmax
Ψ∈Ω

Lc(Ψ;X,z(q+1)).
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CEM for GMMs

the CEM algorithm, for the case of mixture models, is equivalent to
integrating a classification step (C-step) between the E- and the M- steps of
the EM algorithm.

The C-step assigns the observations to the component densities by using the
MAP rule:

1 E-step: Compute the conditional posterior probabilities τ(q)ik that the
observation xi arises from the kth component density.

2 C-step: Assign each observation xi to the component maximizing the
conditional posterior probability τik :

z(q+1)i = argmax
k∈Z

τ
(q)
ik (i = 1, . . . ,n).

⇒ this step provides a hard partition of the data
3 M-step: Update the mixture model parameters by maximizing the

completed-data log-likelihood for the partition provided by the C-step.
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Algorithm 2 Pseudo code of the CEM algorithm for GMMs.
Inputs: a data set X and the number of clusters K

fix a threshold ε> 0 ; set q ← 0 (iteration)

Initialize: Ψ(0) = (π
(0)
1 , . . . ,π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K ) with Ψ(0)k = (µ

(0)
K ,Σ

(0)
K )

while increment in the complete-data log-likelihood > ε do
E-step:
for k = 1, . . . ,K do

Compute τ(q)ik ==
πk N (xi ;µ

(q)
k ,Σ

(q)
k )∑K

`=1 π`N (xi ;µ
(q)
`

,Σ
(q)
`

)

end for
C-step:
for k = 1, . . . ,K do

Compute z(q)i = arg max
k∈Z

τ
(q)
ik for i = 1, . . . ,n

Set z(q)ik = 1 if z(q)i = k and z(q)ik = 0 otherwise, for i = 1, . . . ,n
end for
M-step:
for k = 1, . . . ,K do

Compute π(q+1)k =
∑n

i=1 z(q)ikn
Compute µ(q+1)k = 1

n(q)k

∑n
i=1 z(q)ik xi

Compute Σ(q+1)k = 1
n(q)k

∑n
i=1 z(q)ik (xi −µ(q+1))(xi −µ(q+1))T

end for
q ← q+1

end while
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CEM algorithm

CEM is easy to implement, typically faster to converge than EM and
monotonically improves the complete-data log-likelihood as the learning
proceeds.
converges toward a local maximum of the complete-data log-likelihood
! CEM provides biased estimates of the mixture model parameters. Indeed,
CEM updates the model parameters from a truncated sample contrary to
EM for which the model parameters are updated from the whole data
through the fuzzy posterior probabilities and therefore the parameter
estimations provided by EM are more accurate.
link with K -means:

It can be shown that CEM which is formulated in a probabilistic
framework, generalizes K -means
From a probabilistic point of view, K -means is equivalent to a
particular case of the CEM algorithm for a mixture of K Gaussian
densities with the same proportions πk = 1

K ∀k and identical isotropic
covariance matrices Σk =σ2I ∀k.
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Parsimonious Gaussian mixture models

1 Model-based clustering

2 Parsimonious Gaussian mixture models

3 The Bayesian mixture for model-based clustering

4 The Bayesian non-parametric GMM (Infinite GMM)

5 Infinite parsimonious GMMs and Dirichlet Process Mixture

6 experiments

7 Conclusion
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Parsimonious Gaussian mixtures

Parsimonious Gaussian mixture models1are statistical models that allow for
capturing a specific cluster shapes (e.g., clusters having the same shape or
different shapes, spherical or elliptical clusters, etc).

Eigenvalue decomposition of the cluster covariance matrices:

Σk =λkDkAkDT
k

where
λk represents the volume of the kth cluster (the amount of space of
the cluster).
Dk is a matrix with columns corresponding to the eigenvectors of Σk
that determines the orientation of the cluster.
Ak is a diagonal matrix, whose diagonal entries are the normalized
eigenvalues of Σk arranged in a decreasing order and its determinant is
1. This matrix is associated with the shape of the cluster.

1Banfield and Raftery (1993b); Celeux and Govaert (1995)
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Parsimonious Gaussian mixtures

This eigenvalue decomposition provides three main families of models: the
spherical family, the diagonal family, and the general family
and produces 14 different models, according to the choice of the
configuration for the parameters λk , Ak , and Dk

Decomposition Model-Type Prior Applied to
λI Spherical IG λ

λk I Spherical IG λk
λA Diagonal IG diag(λA)
λkA Diagonal IG diag(λkA)

λDADT General IW Σ=λDADT

λkDADT General IG and IW λk and Σ=DADT

λkDkAkDT
k General IW Σk =λkDkAkDT

k
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Parsimonious GMMs

In addition to providing flexible statistical models for the clusters,
parsimonious Gaussian mixture can be viewed as techniques for reducing the
number of parameters in the model.

imposing constraints on the covariance matrices reduces the dimension of
the optimization problem.

The EM algorithms therefore provide more accurate estimations compared
to the full mixture model.

Faicel Chamroukhi (UTLN/CNRS LSIS - France)ICML 2014- uLearnBio workshop, Beijing 26 June 2014 35 / 63



Model-based clustering Parsimonious Gaussian mixture models Bayesian mixtures The Bayesian non-parametric GMM (Infinite GMM) Infinite parsimonious GMMs and Dirichlet Process Mixture experiments Conclusion References

Model selection

The problem of choosing the number of clusters can be seen as a model
selection problem.

The model selection task consists of choosing a suitable compromise
between flexibility so that a reasonable fit to the available data is obtained,
and over-fitting.

A common way is to use a criterion (score function) that ensure the
compromise.

In general, we choose an overall score function that is explicitly composed of
two components: a component that measures the goodness of fit of the
model to the data, and a penalty component that governs the model
complexity:

score(model)= error(model)+penalty(model)

which will be minimized.
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Model selection

The complexity of a model M is related to the number of its (free)
parameters ν, the penalty function then involves the number of model
parameters.

Let M denote a model, L (θ) its log-likelihood and ν the number of its free
parameters. Consider that we fitted M different model structures
(M1, . . . ,MM), from which we wish to choose the “best" one (ideally the one
providing the best prediction on future data).

Assume we have estimated the model parameters θ̂m for each model
structure Mm (m= 1, . . . ,M) from a sample of n observations X= (x1, . . . ,xn)
and now we wish to choose among these fitted models.
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Model selection

• Akaike Information Criterion (AIC):
AIC(Mm)=L (θ̂m)−νm

• Bayesian Information Criterion (BIC):

BIC(Mm)=L (θ̂m)− νm log(n)
2

• Integrated Classification Likelihood (ICL):

ICL(Mm)=Lc(θ̂m)− νm log(n)
2

where Lc(θ̂m) is the complete-data log-likelihood for the model Mm and νm
denotes the number of free model parameters. For example, in the case of a
d-dimensional Gaussian mixture model we have:

ν= (K −1)︸ ︷︷ ︸
πk ’s

+K ×d)︸ ︷︷ ︸
{µk }

+K × d × (d +1)
2︸ ︷︷ ︸

{Σk }

= K × (d +1)× (d +2)
2 −1.
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Examples
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Figure : Clustering results obtained with K -means algorithm (left) with K = 2 and
the EM algorithm (right). The cluster centers are shown by the red and blue
crosses and the ellipses are the contours of the Gaussian component densities at
level 0.4 estimated by EM. The number of clusters for EM have been chosen by
BIC for K = 1, . . . ,4.
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Examples
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Figure : A three-class example of a real data set: Iris data of Fisher.
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Figure : Iris data: Clustering results with EM for a GMM and AIC.
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Examples
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Figure : Iris data of Fisher: The data are colored according to the true partition.
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Bayesian regularization of mixtures and Model-Based
Clustering

1 Model-based clustering

2 Parsimonious Gaussian mixture models

3 The Bayesian mixture for model-based clustering
The Bayesian finite mixture model
The Bayesian finite Gaussian Mixture Model (GMM)

4 The Bayesian non-parametric GMM (Infinite GMM)

5 Infinite parsimonious GMMs and Dirichlet Process Mixture

6 experiments

7 Conclusion
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The Bayesian finite mixture model

Graphical model representation of
the Bayesian finite mixture model

Generative model

π1, ...,πK |α ∼ Dir |(α1, . . . ,αK )

zi |π ∼ Mult(.|π)
θzi |G0 ∼ G(.|G0)

xi |zi ,θzi ∼ f (.|θzi )

θzi = (µzi ,Σzi )

G : prior distribution
G0 : hyperparameters
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The Bayesian finite GMM

Graphical model representation of
the Bayesian finite GMM

Generative model

π1, ...,πK |α ∼ Dir |(α1, . . . ,αK )

zi |π ∼ Mult(.|π)
θzi |G0 ∼ G(.|G0)

xi |zi ,θzi ∼ f (.|θzi )

θk = (µk ,Σk)

µk ∼ N (µ0,V0)

Σk ∼ IW (S0,ν0)
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The Gibbs sampler for the Bayesian finite GMM

Bayesian sampling

zi |X,µ,θ ∼ Mult(.|τi1, ...,τiK ) (1)

τik = p(zi = k |xi ,π,θ =) πkN (xi |θk)∑K
k=1πlN (xi |θl

π1, ...,πK |z ∼ Dir (.|α1+n1, . . . ,αK +nK ) (2)

nk =
n∑

i=1
zik

µk |Σk ,z,X ∼ N (.|mk ,Vk) (3)
V−1

k = V−1
0 +nkΣ

−1
k

mk = Vk(Σ
−1
k

n∑
i=1

zikxi +V−1
0 m0)

Σk |µk ,z,bx ∼ IW (S0+
n∑

i=1
zik(xi −µk)(xi −µk)

T ,ν0+nk) (4)
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Infinite Gaussian Mixture Model and Dirichlet Process
Mixtures

Infinite GMM: p(xi |θ)=∑∞
k=1πk Nk(xi |θk) Rasmussen (2000)

Parameters: θ = {πk , θk = (µk , Σk)}∞k=1
Prior: add a distribution over the parameters distribution: a Dirichlet
Process Antoniak (1974)
Generative model:

G |α,G0 ∼ DP(α,G0)

θi |G ∼ G
xi |θi ∼ p(.|θi )

equivalent to
zi |α ∼ CRP(z\i ;α)

θzi |G0 ∼ G0

xi |θzi ∼ p(.|θzi )

Learning algorithms: Gibbs Rasmussen (2000); Neal (1993), Collapsed Gibbs
Wood and Black (2008)...
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Chinese Restaurant Process (CRP)
Imagine a Restaurant with an infinite number of tables and in which customers
are entering and sitting at these tables.

1 The first customer sits at table 1
2 The second customer may sit at table with probability 1

1+α or chose another
table with probability α

1+α
3 . . .
4 ith customer sits at table k with probability proportional to the number of

already seated customers nk and may choose a new table with a probability
proportional to a small positive real number α
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Chinese Restaurant Process (CRP)

Chinese Restaurant Process (CRP) Wood and Black (2008); Samuel and Blei
(2012):

The CRP provides a distribution on the infinite partitions of the data:
p(z)= p(z1)p(z2|z1) . . .p(zn|zn−1):

p(zi = k |z1, ...,zi−1) = CRP(z1, ...,zi−1;α)

=
{ nk

i−1+α if k ≤K+
α

i−1+α if k >K+

α represents the CRP concentration parameter

K+ : nbr. of tables for which the nbr. of customers sitting in is nk > 0
(active clusters)

k ≤K+ means that k is a previously occupied table and k >K+ means k is a
new table to be occupied.
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Gibbs sampler for the Infinite Parsimonious GMM
Algorithm 3 Gibbs sampler for the Infinite Parsimonious GMM
Entrees: Data xi , nbr of Gibbs samples ns .
Initialization: q← 0; hyper-parameters G(q)

0 , α; nbr of clusters K+ = 1.
for i = 1, . . . ,n do
sample the cluster labels z(t)i ∼ p(xi |zi ,θk) CRP({z1, . . . ,zn}\zi ;α

(t))

if z(t)i =K++1 create a new cluster K+ =K++1, sample θ(t)zi from the
prior

end for
for k = 1, . . . ,K+ do
sampleθ(t)k from the posterior

end for
sample α(t)

z(t+1) ← z(t)
α(t+1) ←α(t)

t ← t +1
Outputs: {θ̂, ẑ,K̂ =K+}Faicel Chamroukhi (UTLN/CNRS LSIS - France)ICML 2014- uLearnBio workshop, Beijing 26 June 2014 48 / 63



Model-based clustering Parsimonious Gaussian mixture models Bayesian mixtures The Bayesian non-parametric GMM (Infinite GMM) Infinite parsimonious GMMs and Dirichlet Process Mixture experiments Conclusion References

Seven included models in the non-parametric approach:

Decomposition Model-Type Prior Applied to
λI Spherical IG λ

λk I Spherical IG λk
λA Diagonal IG diag(λA)
λkA Diagonal IG diag(λkA)

λDADT General IW Σ=λDADT

λkDADT General IG and IW λk and Σ=DADT

λkDkAkDT
k General IW Σk =λkDkAkDT

k

Bayesian learning
Gibbs sampler: e.g for λkDADT : Normal Inverse-Wishart (prior/posterior)

µk |. ∼N (µ0,λkΣ0/κ0) ... Σ0|. ∼IW (ν0,Λ0) ...λk |. ∼IG (r0/2,s0/2)
µk |X, . ∼N (

nkxk+κ0µ0
nk+κ0 , λkΣ0

nk+κ0 )

Σ0|X, . ∼IW (ν0+n,Λ0+
K∑

k=1

{
Wk
λk

+ nkκ0
λk(nk+κ0) (xk −µ0)(xk −µ0)T

}
)

λk |X, . ∼IG ( r0+nk d
2 , 12

{
s0+ tr(WkΣ

−1
0 )+ nkκ0

nk+κ0 (xk −µ0)
TΣ−1

0 (xk −µ0)
}
)
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Markovian Extension
The infinite GMMs has been extended to the infinite HMM for sequential data
modeling: This is the Hierarchical Dirichlet Process for Hidden Markov Model
(HDP-HMM)
Two main inference approaches approaches: the Gibbs sampling 2 3 and the
Beam sampling 4.

Figure : Infinite Hidden Markov Model (IHMM) graphical representation

2Fox et al. (2008)
3Teh et al. (2006)
4Van Gael et al. (2008)
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Experiment on simulated data

1 A two-clusters data set
2 n= 500 observation in R2

3 π= [.5 .5]; µ1 = [0 0]T ; µ2 = [3 0]T ; Σ1 = 100∗ I2;Σ2 = I2
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Experiments on benchmarks

Dataset n d True K
Iris 150 4 3
Old Faithful Geyser 272 2 ?
Trees 31 3 ?
Wine 178 13 3
Diabetes 145 3 3

Model Iris Geyser Trees Wine Diabetes
λI 4 2 1 1 3
λk I 3 2 1 2 5
λA 3 3 2 3 3
λkA 3 2 2 1 5

λDADT 4 2 2 3 5
λkDADT 2 2 2 3 3
λkDkAkDT

k 2 2 2 3 3

Table : Estimated K by the infinite parsimonious GMM
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Experiments on Benchmarks
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Figure : Graphical results for Iris data
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Experiments on Benchmarks
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Figure : Graphical results for Old Faithful Geyser data
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Whale song decomposition

In this experiment, we apply the proposed approach to a challenging problem
of humpback whale song decomposition.

The analysis is unsupervised and aims at discovering the call units (which
can be considered as a kind of whale vocabulary),

this can be seen as a problem of unsupervised call units classification as in5.

We therefore reformulate the problem of whale song decomposition as a
clustering problem.

We apply our proposed IPGMM to find a partition of the whale song into
clusters, and automatically infer the number of clusters from the data.

We then extend the Infinite GMM to the Markovian case as in

The data consist of MFCC parameters of 8.6 minutes of a Humpback whale
song recordings

5Pace et al. (2010)
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whale song decomposition problem
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whale song decomposition problem
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State sequence obtained by using a HDP-HMM 6.
"sparse" approach: the number of estimated states equals K = 6

Figure : State sequence obtained by an Infinite HMM.

song unit 16 song unit 19 song unit 30

Figure : Spectrograms for some song units of the humpback whale obtained with
by Gibbs samplign for the Infinite HMM.

6Teh et al. (2006); Fox et al. (2008)
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Figure : The state sequences (left) and the spectrogram of the ninth unit (right)
obtained by the HDP-HMM (Beam sampling)
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Conclusion and Perspectives

Mixtures are very flexible for cluster analysis namely via Parsimonious
mixture modeling
The Dirichlet Process mixture approach is a Bayesian non-parametric
alternative
It avoids the problem of model selection encountered in maximum likelihood
and Bayesian learning of parametric GMMs

The parsimonious version allows to have several flexible models adapted for
several clusters configurations
Perspectives :

More comparisons between the different modes (e.g. using Bayes
Factors)
More experiments for the Markovian extension for sequential data
Infinite block mixture
Other MCMC techniques
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Thank you!
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