TC2: Optimization for Machine Learning

Master of Science in AI and Master of Science in Data Science @ UPSaclay 2025/2026.

FAÏCEL CHAMROUKHI

week 3: November 20, 2025.

Continuous Optimization; Gradient Descent

Outline

- Continuous Optim concepts Descent Methods
 - Maths concepts for (gradient) descent methods
 - (Gradient) Descent Methods in Optimization

Maths concepts for the descent methods

Continuing the ingredients of (gradient) descent methods

A tour of the following aspects:

- Intuition behind descent methods
- Gradient and link to minimization
- Descent Directions
- Descent and Gradient
- Steepest/Fastest Descent
- Convergence aspects
- Convergence rates
- Line Search

Taylor's Theorem (Lagrange Form)

Motivation of Taylor Expansion

- lacktriangle How to minimize a function f if we don't know much about its structure?
- Assuming the function can be approximated by its derivatives around a point, which simplifies the problem.
- The trick is to approximate it by polynomials by using Taylor's approximation, which allows us to locally approximate the function.

Taylor's Theorem

- Let k be a natural number, $x_0 \in \mathbb{R}$, and f a function that is k-times continuously differentiable on an interval $[x_0, x]$
- Then there exists some ξ between x_0 and x such that :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(k)}(\xi)}{k!}(x - x_0)^k.$$

Implication : Taylor's theorem allows us to approximate f(x) around x_0 with increasingly accurate terms based on the derivatives at x_0 .

Taylor's Theorem (Lagrange Form)

Motivation of Taylor Expansion

- lacktriangle How to minimize a function f if we don't know much about its structure?
- Assuming the function can be approximated by its derivatives around a point, which simplifies the problem.
- The trick is to approximate it by polynomials by using Taylor's approximation, which allows us to locally approximate the function.

Taylor's Theorem:

- Let k be a natural number, $x_0 \in \mathbb{R}$, and f a function that is k-times continuously differentiable on an interval $[x_0, x]$
- Then there exists some ξ between x_0 and x such that :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(k)}(\xi)}{k!}(x - x_0)^k.$$

Implication : Taylor's theorem allows us to approximate f(x) around x_0 with increasingly accurate terms based on the derivatives at x_0 .

Taylor Expansion for Functions on \mathbb{R}^n

Taylor Approximation for $f: \mathbb{R}^n \to \mathbb{R}$:

■ If f is continuously twice differentiable, then for any $x, x_0 \in \mathbb{R}^n$, we have :

$$f(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0) + R_3(x),$$

where $R_3(x)$ is the remainder term :

$$R_3(x) = O(\|x - x_0\|^3)$$
 which vanishes as $x \to x_0$.

- Explicitly, if f is three-times differentiable, $R_3(x)$ can be expressed as $: R_3(x) = \frac{1}{6}(x-x_0)^T \nabla^3 f(\xi)[x-x_0,x-x_0]$, where $\nabla^3 f(\xi)$ is the third-order tensor of partial derivatives evaluated at some ξ between x and x_0 .
 - $abla^3 f(\xi)[x-x_0,x-x_0]$: Multilinear application of the 3d-order derivative tensor.

Taylor Expansion for Functions on \mathbb{R}^n

Taylor Approximation for $f: \mathbb{R}^n \to \mathbb{R}$:

■ If f is continuously twice differentiable, then for any $x, x_0 \in \mathbb{R}^n$, we have :

$$f(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0) + R_3(x),$$

where $R_3(x)$ is the remainder term :

$$R_3(x) = O(\|x - x_0\|^3)$$
 which vanishes as $x \to x_0$.

■ Explicitly, if f is three-times differentiable, $R_3(x)$ can be expressed as $: R_3(x) = \frac{1}{6}(x-x_0)^T \nabla^3 f(\xi)[x-x_0,x-x_0]$, where $\nabla^3 f(\xi)$ is the third-order tensor of partial derivatives evaluated at some ξ between x and x_0 .

 $abla^3 f(\xi)[x-x_0,x-x_0]$: Multilinear application of the 3d-order derivative tensor.

Using Taylor Expansion for Approximation

Taylor Approximation for $f: \mathbb{R}^n \to \mathbb{R}$:

■ If f is continuously twice differentiable, then for any $x, x_0 \in \mathbb{R}^n$, Provided that $\|x - x_0\|$ is small (i.e., x is close to x_0), we can approximate f(x) by :

$$f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0)$$
 (first-order approximation)

or

$$f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)$$
 (second-order approximation)

- Here, $\nabla f(x_0)$ is the gradient of f at x_0 , and $\nabla^2 f(\xi)$ is the Hessian matrix
- **Comparison :** The second-order approximation is more accurate but also more computationally expensive (includes the Hessian), requiring f to be twice differentiable.
- Both approximations are valid if $||x x_0||$ is small.

Higher-Order Approximation : If f is continuously thrice differentiable, an additional error term can be expressed as $O(\|x - x_0\|^3)$.

Using Taylor Expansion for Approximation

Taylor Approximation for $f: \mathbb{R}^n \to \mathbb{R}$:

■ If f is continuously twice differentiable, then for any $x, x_0 \in \mathbb{R}^n$, Provided that $||x - x_0||$ is small (i.e., x is close to x_0), we can approximate f(x) by :

$$f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0)$$
 (first-order approximation)

or

$$f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)$$
 (second-order approximation)

- Here, $\nabla f(x_0)$ is the gradient of f at x_0 , and $\nabla^2 f(\xi)$ is the Hessian matrix
- **Comparison :** The second-order approximation is more accurate but also more computationally expensive (includes the Hessian), requiring f to be twice differentiable.
- Both approximations are valid if $||x x_0||$ is small.

Higher-Order Approximation : If f is continuously thrice differentiable, an additional error term can be expressed as $O(\|x - x_0\|^3)$.

Example of First-Order Taylor Approximation

Example : What is the of first-order Taylor approximation of $f(x) = x^2 + 3x$ around $x_0 = 1$.

- Compute f(1), f'(1), and apply the first-order Taylor approximation.
- $f(1) = 1^2 + 3 \times 1 = 4.$
- f'(x) = 2x + 3, so $f'(1) = 2 \times 1 + 3 = 5$.
- First-order Taylor approximation around $x_0 = 1$:

$$f(x) \approx f(1) + f'(1) \cdot (x - 1) = 4 + 5(x - 1).$$

■ This linear approximation provides a close estimate of f(x) near x = 1, which we can use to analyze the behavior of f(x).

Example of First-Order Taylor Approximation

Example : What is the of first-order Taylor approximation of $f(x) = x^2 + 3x$ around $x_0 = 1$.

- Compute f(1), f'(1), and apply the first-order Taylor approximation.
- $f(1) = 1^2 + 3 \times 1 = 4.$
- f'(x) = 2x + 3, so $f'(1) = 2 \times 1 + 3 = 5$.
- First-order Taylor approximation around $x_0 = 1$:

$$f(x) \approx f(1) + f'(1) \cdot (x - 1) = 4 + 5(x - 1).$$

■ This linear approximation provides a close estimate of f(x) near x=1, which we can use to analyze the behavior of f(x).

Descent Directions

Continuing the preparation of the ingredients of the gradient descent algorithm

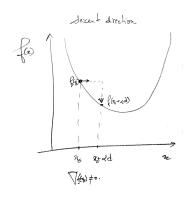
Definition (Descent Direction):

- lacktriangle The concept of descent direction allows us to identify directions d in which the function f decreases locally.
- Let x be a point in the domain of f such that $\nabla f(x) \neq 0$, meaning x is not a critical point of f.
- A descent direction for f at x is a nonzero vector $d \in \mathbb{R}^n$ such that there exists $\bar{\alpha} > 0$ with the property :

$$f(x + \alpha d) < f(x)$$
 for all α , $0 < \alpha < \bar{\alpha}$.

■ Means f strictly decreases along the half-line $\{x + \alpha d : \alpha > 0\}$ for sufficiently small step sizes $\alpha > 0$.

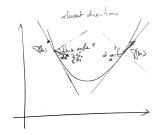
Descent Directions



Conditions for a Descent Direction

Lemma : Let x be a noncritical point of f (ie. $\nabla f(x) \neq 0$), and $d \in \mathbb{R}^n$ a nonzero vector. If $\nabla f(x)^T d < 0$, then d is a descent direction for f at x.

- Interpretation: $\nabla f(x)^T d \leq 0$ means d forms an obtuse angle with the gradient $\nabla f(x)$), \implies A vector d that forms an obtuse angle with the gradient $\nabla f(x)$ ensures f decreases along d.
- Conversely, if d is a descent direction for f at x, then $\nabla f(x)^T d \leq 0$.

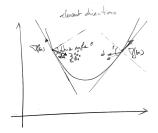


■ Implication of Descent Directions: choosing d in a direction opposite to $\nabla f(x)$ guarantees descent. (proof for the opposite case to lead to the steepest descent will be proved later)

Conditions for a Descent Direction

Lemma: Let x be a noncritical point of f (ie. $\nabla f(x) \neq 0$), and $d \in \mathbb{R}^n$ a nonzero vector. If $\nabla f(x)^T d < 0$, then d is a descent direction for f at x.

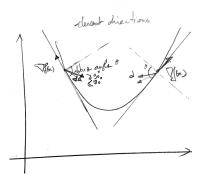
- Interpretation: $\nabla f(x)^T d \leq 0$ means d forms an obtuse angle with the gradient $\nabla f(x)$), \implies A vector d that forms an obtuse angle with the gradient $\nabla f(x)$ ensures f decreases along d.
- Conversely, if d is a descent direction for f at x, then $\nabla f(x)^T d \leq 0$.



■ Implication of Descent Directions : choosing d in a direction opposite to $\nabla f(x)$ guarantees descent. (proof for the opposite case to lead to the steepest descent will be proved later)

graphic illustration of descent directions

■ Interpretation : $\nabla f(x)^T d \leq 0$: A vector d that forms an obtuse angle with the gradient $\nabla f(x)$ ensures f decreases along d.



■ Implication of Descent Directions: choosing d in a direction opposite to $\nabla f(x)$ guarantees descent. (proof for the opposite case to lead to the steepest descent will be proved later)

Proof of the lemma:

■ Since f is differentiable, then by first-order Taylor expansion's theorem we can approximate $f(x + \alpha d)$ for small $\alpha > 0$ as :

$$f(\alpha d + x) = f(x) + \alpha \nabla f(x)^{T} d + o(\alpha),$$

where $o(\alpha)$ represents higher-order terms that vanish as $\alpha \to 0$.

- If $\nabla f(x)^T d < 0$, then for small $\alpha > 0$, the term $\alpha \nabla f(x)^T d$ is negative, implying $f(x + \alpha d) < f(x)$.
- Therefore, d is a descent direction for f at x.

The Steepest-Descent Direction

what is the best (fastest) descent we can achieve? \hookrightarrow We saw that :

by first-order Taylor approximation we have :

$$\begin{split} f(\alpha d + x) &= f(x) + \alpha \nabla f(x)^T d + o(\alpha), \\ f(x + \alpha d) &\approx f(x) + \alpha \nabla f(x)^T d \quad \text{for small } \alpha > 0, \end{split}$$

- lacksquare if $d \neq \mathbf{0}$ is such that $\nabla f(x)^T d < 0$, then it is a descent direction for f at x
- \hookrightarrow to achieve the maximum decrease in f(x) for a small $\alpha > 0$, we should minimize $\nabla f(x)^T d$ over all directions $d \in \mathbb{R}^n$ with ||d|| = 1.

Derivation

- The minimum occurs when $\cos(\theta) = -1$. This indicates that the two vectors $\nabla f(x)$ and d are pointing in exactly opposite directions.
- Thus, we choose $\nabla f(x)^T d = -\|\nabla f(x)\|\|d\|$, that is $d = -\nabla f(x)\frac{\|d\|}{\|\nabla f(x)\|}$.
- The (unnormalized) direction $d = -\nabla f(x)$ (anti-gradient) is called the **steepest-descent direction** of f at x, as it yields the greatest decrease in f

The Steepest-Descent Direction

what is the best (fastest) descent we can achieve? \hookrightarrow We saw that :

by first-order Taylor approximation we have :

$$\begin{split} f(\alpha d + x) &= f(x) + \alpha \nabla f(x)^T d + o(\alpha), \\ f(x + \alpha d) &\approx f(x) + \alpha \nabla f(x)^T d \quad \text{for small } \alpha > 0, \end{split}$$

- if $d \neq \mathbf{0}$ is such that $\nabla f(x)^T d < 0$, then it is a descent direction for f at x
- $lackbox{ }\hookrightarrow$ to achieve the maximum decrease in f(x) for a small $\alpha>0$, we should minimize $\nabla f(x)^Td$ over all directions $d\in\mathbb{R}^n$ with $\|d\|=1$.

Derivation:

- $\blacksquare \ \nabla f(x)^T d = \|\nabla f(x)\| \|d\| \cos(\theta),$ where θ is the angle between $\nabla f(x)$ and d
- The minimum occurs when $\cos(\theta) = -1$. This indicates that the two vectors $\nabla f(x)$ and d are pointing in exactly opposite directions.
- Thus, we choose $\nabla f(x)^T d = -\|\nabla f(x)\|\|d\|$, that is $d = -\nabla f(x)\frac{\|d\|}{\|\nabla f(x)\|}$.
- The (unnormalized) direction $d = -\nabla f(x)$ (anti-gradient) is called the **steepest-descent direction** of f at x, as it yields the greatest decrease in f

$$\nabla f(x)^{T} d = -\|\nabla f(x)\| \|d\|$$

$$\nabla f(x)^{T} d \|\nabla f(x)\| \|d\| = -\|\nabla f(x)\| \|d\| \|\nabla f(x)\| \|d\|$$

$$\nabla f(x)^{T} d \|\nabla f(x)\| \|d\| = -\|\nabla f(x)\|^{2} \|d\|^{2}$$

$$\nabla f(x)^{T} d \|\nabla f(x)\| \|d\| = -\nabla f(x)^{T} \nabla f(x) \|d\|^{2}$$

$$d \|\nabla f(x)\| \|d\| = -\nabla f(x) \|d\|^{2}$$

$$\frac{d}{\|d\|} = -\frac{\nabla f(x)}{\|\nabla f(x)\|}$$

Descent Methods in Optim

Key Idea:

Thes ingredients form the basis idea of descent methods in optimization : take iterative steps in descent directions to reduce the value of f and guide the search towards a minimum.

Descent Methods in Optimization

To minimize a differentiable function f, The **Gradient Descent** algorithm operates the following sequence of iterates :

- Initialization : Start with an initial point $x^{(0)}$.
- **Iteration :** For $k = 1, 2, \ldots$:

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)},$$

- $d^{(k)} = -\nabla f(x^{(k)})$: the descent direction (negative gradient).
- $ightharpoonup lpha^{(k)}$: the step size (learning rate).
- until a stopping criterion is reached.

Why it works: By moving in the direction opposite to the gradient, the algorithm ensures f decreases at each step for a properly chosen step size $\alpha^{(k)}$.

Convergence of Descent Methods

Does this converge?

Theorem: Convergence to a Critical Point

- \blacksquare Let f satisfy smoothness and convexity conditions (detailed later)
- Let d_k satisfy the condition of a descent direction (i.e., the angle between the gradient $\nabla f(x_k)$ and and d_k is an obtuse angle (between 90 and 180 degrees, or equivalently, the angle θ_k between the anti-gradient $-\nabla f(x_k)$ and d_k is positive and less than 90 degrees), so that we ensure we are indeed moving in a decreasing direction.
- Let $\{x_k\}_{k=0}^{\infty}$ be the sequence of vectors generated by a descent method :

$$x_{k+1} = x_k + \alpha_k d_k,$$

where the step size α_k is properly chosen (a critical question!) (eg., by line search, like the Armijo rule its parameters s (initial step size), β (reduction factor), and σ (sufficient decrease condition)). [Will be seen later]

■ If the sequence $\{x_k\}_{k=0}^{\infty}$ has a limit point $x^* = \lim_{i \to \infty} x_{k_i}$, then x^* is a critical point of f, i.e., $\nabla f(x^*) = 0$.

Proof of Convergence to a Critical Point

Assumptions:

- $x^* = \lim_{i \to \infty} x_{k_i}$ is a limit point of the sequence $\{x_k\}_{k=0}^{\infty}$.
- By definition of a limit point, the subsequence $\{x_{k_i}\}$ converges to x^* , i.e., $x_{k_i} \to x^*$ as $i \to \infty$.

Since:

■ d_k is a descent direction, ensuring $f(x_k)$ decreases at each step unless $\nabla f(x_k) = 0$.

This implies that near a limit point x^* , gradient $\nabla f(x_k)$ must approach 0.

lacksquare By continuity of the gradient abla f(x), as $x_k o x^*$, the gradient satisfies :

$$\nabla f(x^*) = \lim_{k \to \infty} \nabla f(x_k) = 0.$$

Then:

- The sequence $\{x_k\}$ converges to x^* , and at x^* , we have $\nabla f(x^*) = 0$.
- Therefore, x^* is a critical point of f, as required.

Convergence Rates

Essentials (convexity, Smoothness, \dots) for analyzing convergence rates of optimization algorithms.

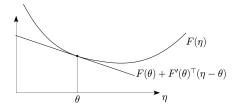
Definition of a Convex Function

Definition (Convex Function):

■ A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is said to be **convex** iff $\forall x, \theta \in \mathbb{R}^d$,

$$f(x) \ge f(\theta) + \nabla f(\theta)^{\top} (x - \theta).$$

lacksquare The inequality implies that f is always above its linear approximation at heta.



■ Consequence : This implies : $f(\theta) - f(x) \le \nabla f(\theta)^{\top} (\theta - x), \forall x, \theta \in \mathbb{R}^d$.

Consequences of Convexity

Consequence for Optimization:

A key property we will use frequently in the analysis of GD and SGD is :

$$f(x^*) \ge f(\theta) + \nabla f(\theta)^{\top} (x^* - \theta),$$

which implies:

$$f(\theta) - f(x^*) \le \nabla f(\theta)^{\top} (\theta - x^*),$$

for all $\theta \in \mathbb{R}^d$, where x^* is the minimizer of f.

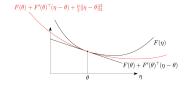
ightarrow an upper bound for the function value gap at any point

Definition of Strong Convexity

Definition (Strong Convexity):

■ A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is said to be μ -strongly convex if there exists a constant $\mu > 0$ such that for all $x, \theta \in \mathbb{R}^d$,

$$f(x) \ge f(\theta) + \nabla f(\theta)^{\top} (x - \theta) + \frac{\mu}{2} ||x - \theta||^2.$$



- lacktriangleright Strong convexity ensures that f(x) is "curved" everywhere, and μ quantifies the lower bound on this curvature.
- Consequence in Optimization : At a critical point, (by taking $\theta = x^*$), Strong convexity implies :

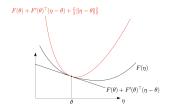
$$f(x) - f(x^*) \ge \frac{\mu}{2} ||x - x^*||^2$$
. NE

Smoothness

Definition (L-Smoothness):

A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is said to be L-smooth (L > 0) if and only if :

$$f(x) \le f(\theta) + \nabla f(\theta)^{T} (x - \theta) | + \frac{L}{2} ||\theta - x||^{2}, \quad \forall \theta, x \in \mathbb{R}^{d}.$$
$$(f(x) - f(\theta) - \nabla f(\theta)^{T} (x - \theta)) \le \frac{L}{2} ||\theta - x||^{2}, \quad \forall \theta, x \in \mathbb{R}^{d}.$$



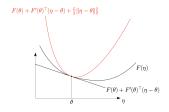
- This is equivalent to Smoothness (Lipschitz Continuity of Gradient):
 - A function f is L-smooth if its gradient is L-Lipschitz continuous, i.e., $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$ for all $x, y \in \mathbb{R}^d$.
- \rightarrow This means the gradient of f(x) cannot change arbitrarily fast, and L represents the upper bound on this rate of change.

Smoothness

Definition (L-Smoothness):

■ A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is said to be L-smooth (L>0) if and only if :

$$f(x) \le f(\theta) + \nabla f(\theta)^{T} (x - \theta) | + \frac{L}{2} ||\theta - x||^{2}, \quad \forall \theta, x \in \mathbb{R}^{d}.$$
$$(f(x) - f(\theta) - \nabla f(\theta)^{T} (x - \theta)) \le \frac{L}{2} ||\theta - x||^{2}, \quad \forall \theta, x \in \mathbb{R}^{d}.$$



- This is equivalent to Smoothness (Lipschitz Continuity of Gradient) :
 - A function f is L-smooth if its gradient is L-Lipschitz continuous, i.e., $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$ for all $x, y \in \mathbb{R}^d$.
- \hookrightarrow This means the gradient of f(x) cannot change arbitrarily fast, and L represents the upper bound on this rate of change.

For a twice differentiable function $f:\mathbb{R}^d\to\mathbb{R}$, convexity, strong convexity and smoothness can be expressed in terms of the Hessian matrix $\nabla^2 f(x)$

■ Equivalent Condition for Convexity : convexity is equivalent to requiring :

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f positive

■ Eq. Condition for Strong Convexity : f is μ -strongly convex iff :

$$\nabla^2 f(x) \succeq \mu I, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f are larger than μ

■ Equivalent Condition for Smoothness : L-smoothness is equivalent to :

$$-LI \leq \nabla^2 f(x) \leq LI, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f are at most equal to L

■ Equivalent Condition for Strong Convexity and Smoothness : f is μ -strongly convex and L-smooth is equivalent to :

$$\mu I \leq \nabla^2 f(x) \leq LI, \quad \forall x \in \mathbb{R}^d.$$

For a twice differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, convexity, strong convexity and smoothness can be expressed in terms of the Hessian matrix $\nabla^2 f(x)$

■ Equivalent Condition for Convexity : convexity is equivalent to requiring :

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f positive

Eq. Condition for Strong Convexity : f is μ -strongly convex iff :

$$\nabla^2 f(x) \succeq \mu I, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f are larger than μ

■ Equivalent Condition for Smoothness : L-smoothness is equivalent to :

$$-LI \preceq \nabla^2 f(x) \preceq LI, \quad \forall x \in \mathbb{R}^d$$

all the eigenvalues of the Hessian of f are at most equal to L

■ Equivalent Condition for Strong Convexity and Smoothness : f is μ -strongly convex and L-smooth is equivalent to :

$$\mu I \leq \nabla^2 f(x) \leq LI, \quad \forall x \in \mathbb{R}^d.$$

For a twice differentiable function $f:\mathbb{R}^d\to\mathbb{R}$, convexity, strong convexity and smoothness can be expressed in terms of the Hessian matrix $\nabla^2 f(x)$

■ Equivalent Condition for Convexity : convexity is equivalent to requiring :

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f positive

Eq. Condition for Strong Convexity : f is μ -strongly convex iff :

$$\nabla^2 f(x) \succeq \mu I, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f are larger than μ

■ Equivalent Condition for Smoothness : L-smoothness is equivalent to :

$$-LI \leq \nabla^2 f(x) \leq LI, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f are at most equal to L

■ Equivalent Condition for Strong Convexity and Smoothness : f is μ -strongly convex and L-smooth is equivalent to :

$$\mu I \leq \nabla^2 f(x) \leq LI, \quad \forall x \in \mathbb{R}^d.$$

For a twice differentiable function $f:\mathbb{R}^d\to\mathbb{R}$, convexity, strong convexity and smoothness can be expressed in terms of the Hessian matrix $\nabla^2 f(x)$

■ Equivalent Condition for Convexity : convexity is equivalent to requiring :

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f positive

Eq. Condition for Strong Convexity : f is μ -strongly convex iff :

$$\nabla^2 f(x) \succeq \mu I, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f are larger than μ

■ Equivalent Condition for Smoothness : L-smoothness is equivalent to :

$$-LI \leq \nabla^2 f(x) \leq LI, \quad \forall x \in \mathbb{R}^d.$$

all the eigenvalues of the Hessian of f are at most equal to L

■ Equivalent Condition for Strong Convexity and Smoothness : f is μ -strongly convex and L-smooth is equivalent to :

$$\mu I \preceq \nabla^2 f(x) \preceq LI, \quad \forall x \in \mathbb{R}^d.$$

Condition Number for Smooth and Strongly Convex Functions

The **condition Number** κ measures how "well-conditioned" the optimization pblm is :

■ When a function $f: \mathbb{R}^n \to \mathbb{R}$ is both L-smooth and μ -strongly convex, we define its **condition number** κ as :

$$\kappa = \frac{L}{\mu} \ge 1,$$

where L is the smoothness constant and μ is the strong convexity constant.

- μ : Describes the **minimum curvature** (strong convexity of f(x)). μ : Ensures f(x) is not too "flat" (sufficient curvature everywhere).
- L: Describes the **maximum curvature** (smoothness of f(x)). L: Prevents f(x) from being too "steep" (gradient does not grow arbitrarily fast).
- Since μ is the sharpest lower bound on curvature and L is the broadest upper bound, then $L \geq \mu$ \Longrightarrow $\kappa = \frac{L}{\mu} \geq 1$. The ratio $\frac{L}{\mu}$ measures the disparity between the "steepest" and "flattest" directions
- Perfect Case : When $L = \mu$: The function is perfectly conditioned ($\kappa = 1$, e.g. quadratic with spherical level sets).
- When $L \gg \mu : \kappa \gg 1$, indicating worse conditioning.

Condition Number for Smooth and Strongly Convex Functions

The **condition Number** κ measures how "well-conditioned" the optimization pblm is :

■ When a function $f: \mathbb{R}^n \to \mathbb{R}$ is both L-smooth and μ -strongly convex, we define its **condition number** κ as :

$$\kappa = \frac{L}{\mu} \ge 1,$$

where L is the smoothness constant and μ is the strong convexity constant.

- μ : Describes the **minimum curvature** (strong convexity of f(x)). μ : Ensures f(x) is not too "flat" (sufficient curvature everywhere).
- L: Describes the **maximum curvature** (smoothness of f(x)). L: Prevents f(x) from being too "steep" (gradient does not grow arbitrarily fast).
- Since μ is the sharpest lower bound on curvature and L is the broadest upper bound, then $L \geq \mu$ \Longrightarrow $\kappa = \frac{L}{\mu} \geq 1$. The ratio $\frac{L}{\mu}$ measures the disparity between the "steepest" and "flattest" directions
- Perfect Case : When $L = \mu$: The function is perfectly conditioned ($\kappa = 1$, e.g., quadratic with spherical level sets).
- When $L \gg \mu : \kappa \gg 1$, indicating worse conditioning.

 ${
m Figure}$ – Level sets (Contours) : small κ vs large κ

Level Set Definition : Given a function $f: \mathbb{R}^n \to \mathbb{R}$, the *level set* of f corresponding to a scalar $c \in \mathbb{R}$ is the set of all points $x \in \mathbb{R}^n$ such that : $\mathcal{L}_c = \{x \in \mathbb{R}^n \mid f(x) = c\}.$

Condition Number κ and Gradient Descent :

- The performance of gradient descent is influenced by the condition number $\kappa = \frac{L}{\mu}$.
- A small condition number $\kappa \approx 1$ (function with level sets that are nearly circular), results in fast convergence.
- A large condition number $\kappa \gg 1$ leads to slow convergence and oscillations (zigzag).

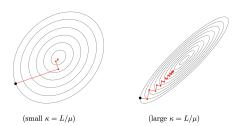


FIGURE – small κ : fast convergence, vs large κ oscillations

Convergence Rates

Theorem (Convergence Rate of Gradient Descent for μ -Strongly Convex and L-Smooth Functions) :

- Assume f is L-smooth and μ -strongly convex.
- For gradient descent with a fixed step size $\alpha_k = \frac{1}{L}$, the iterates $(x_k)_{k\geq 0}$ satisfy :

$$f(x_t) - f(x^*) \le \exp\left(-\frac{k\mu}{L}\right) (f(x_0) - f(x^*)),$$

where:

- $ightharpoonup x^*$ is the minimizer of f,
- $\frac{\mu}{L}$ determines the rate of convergence and depends on the condition number $\kappa = \frac{L}{\mu}$.
- Gradient descent therefore achieves exponential (linear in log-scale) convergence rate for strongly convex functions.

- **I** Gradient Descent Update Rule : $x_{k+1} = x_k \alpha_k \nabla f(x_k)$.
- 2 Substituting $\alpha_k = \frac{1}{L} : x_{k+1} = x_k \frac{1}{L} \nabla f(x_k)$.
- **Strong Convexity Inequality :** For μ -strongly convex f, we have :

$$f(x) \ge f(y) + \nabla f(y)^T (x - y) + \frac{\mu}{2} ||x - y||^2.$$

Substituting $y=x^*$, where $\nabla f(x^*)=0$, gives :

$$f(x_k) - f(x^*) \le -\nabla f(x_k)^T (x_k - x^*) - \frac{\mu}{2} ||x_k - x^*||^2.$$

4 Smoothness Inequality : For L-smooth f :

$$\begin{split} f(x_{k+1}) & \leq & f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{L}{2} \|x_{k+1} - x_k\|^2, \\ & \qquad \qquad \text{Using } x_{k+1} - x_k = -\frac{1}{L} \nabla f(x_k), \text{gives} \\ f(x_{k+1}) & \leq & f(x_k) - \frac{1}{L} \|\nabla f(x_k)\|^2 + \frac{1}{2L} \|\nabla f(x_k)\|^2 = f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 \\ f(x_{k+1}) & \leq & f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2. \quad \text{NB} \end{split}$$

Combining Inequalities: From strong convexity (see proof separataley):

$$\|\nabla f(x_k)\|^2 \ge 2\mu \left(f(x_k) - f(x^*)\right).$$
 NB

Substituting into the smoothness inequality:

$$f(x_{k+1}) - f(x^*) \le (f(x_k) - f(x^*)) - \frac{1}{2L} 2\mu (f(x_k) - f(x^*)).$$

Simplifying:

$$f(x_{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{L}\right) (f(x_k) - f(x^*)).$$

6 Exponential Convergence: By induction (simple):

$$f(x_k) - f(x^*) \le \left(1 - \frac{\mu}{L}\right)^k \left(f(x_0) - f(x^*)\right).$$

Using $1 - x \le e^{-x}$:

$$f(x_k) - f(x^*) \le \exp\left(-\frac{k\mu}{L}\right) (f(x_0) - f(x^*)).$$

CQFD

Proof: Gradient Lower Bound in Strongly Convex Functions

Goal: Derive the inequality: $\|\nabla f(x_k)\|^2 \ge 2\mu \left(f(x_k) - f(x^*)\right)$.

Strong Convexity : $f(y) \ge f(x) + \nabla f(x)^T (y-x) + \frac{\mu}{2} ||y-x||^2$, $\forall x,y$.

Substitute $y = x^* : f(x^*) \ge f(x_k) + \nabla f(x_k)^T (x^* - x_k) + \frac{\mu}{2} ||x^* - x_k||^2$. Rearrange : $f(x_k) - f(x^*) \le -\nabla f(x_k)^T (x^* - x_k) - \frac{\mu}{2} ||x^* - x_k||^2$.

Cauchy-Schwarz Inequality : Using

$$-\nabla f(x_k)^T (x^* - x_k) \le \|\nabla f(x_k)\| \cdot \|x^* - x_k\| :$$

$$f(x_k) - f(x^*) \le \|\nabla f(x_k)\| \cdot \|x^* - x_k\| - \frac{\mu}{2} \|x^* - x_k\|^2.$$

Minimize the r.h.s w.r.t $\|x^* - x_k\|$ leads to $\|x^* - x_k\| = \frac{\|\nabla f(x_k)\|}{\mu}$.

Note: We minimize the r.h.s. to express the inequality solely in terms of the gradient norm $\|\nabla f(x_k)\|$ and the function value gap $f(x_k) - f(x^*)$. This also ensures the sharpest possible lower bound (worst case) on $\|\nabla f(x_k)\|^2$

Substitute :
$$f(x_k) - f(x^*) \le \frac{\|\nabla f(x_k)\|^2}{2\mu}$$
.

Rearrange : $\|\nabla f(x_k)\|^2 \ge 2\mu (f(x_k) - f(x^*))$.

Rk: This inequality relates the gradient norm $\|\nabla f(x_k)\|$ to the function value gap $(f(x_k) - f(x^*))$ and provides a lower bound

Convergence for Smooth and Convex Functions

Convergence of Gradient Descent for Smooth and Convex Functions

Theorem : For a convex and L-smooth function f, gradient descent with a step size $\alpha=\frac{1}{L}$ satisfies :

$$f(x_k) - f(x^*) = O\left(\frac{1}{k}\right),$$

where x^* is the minimizer of f.

Proof detailed as an exercice in the TD

If f is only assumed to be smooth and convex, gradient descent with a constant step size $\alpha=\frac{1}{L}$ still converges, but at a slower rate (sublinear rate).

Rather than $O\left(e^{-rac{k\mu}{L}}
ight)$ for $\mu ext{-strong}$ convex and $L ext{-smooth}$ functions

Convergence for Smooth, Convex Functions

Proof:

- **Smoothness Inequality**: We saw $f(x_{k+1}) \le f(x_k) \frac{1}{2L} \|\nabla f(x_k)\|^2$ (relating function decrease togradient norm).
- **2 Convexity Inequality :** From convexity, $f(x_k) f(x^*) \le \|\nabla f(x_k)\| \cdot \|x_k x^*\|$, bounding the gap.
- **Combining both**: Substituting convexity bound into smoothness inequality:

$$\underbrace{f(x_{k+1}) - f(x^*)}_{\text{unction gap at iteration } k+1} \leq \underbrace{f(x_k) - f(x^*)}_{\text{function gap at iteration } k} - \frac{1}{2L} \frac{(f(x_k) - f(x^*))^2}{\|x_k - x^*\|^2}.$$

NB This shows that the function value gap $f(x_k) - f(x^*)$ decreases iteratively, but the amount of decrease depends on the current gap squared $(f(x_k) - f(x^*))^2$, scaled by $||x_k - x^*||^2$ the distance to the minimizer x^* .

Gradient Descent Reduction : Gradient descent reduces $f(x_k) - f(x^*)$ iteratively. By iteratively applying the inequality, it can be shown that :

$$f(x_k) - f(x^*) \leq \frac{C}{k}$$
, (Proof detailed as an exercice in the TD)

where C > 0 is a constant depending on the initial paramters gap $||x_0| - x^*||$ and the smoothness parameter L.

Line Search

Armijo Rule for Step Size Selection

Purpose of the Armijo Rule:

- The Armijo rule is used to select a step size α_k in descent methods, ensuring that each step decreases the objective function f(x) by a sufficient amount.
- It prevents steps that are too small (which slow down convergence) or too large (which may cause divergence).

Armijo Condition

■ For a given descent direction d_k at x_k , the Armijo rule requires that α_k satisfies :

$$f(x_k + \alpha_k d_k) \le f(x_k) + \sigma \alpha_k \nabla f(x_k)^T d_k$$

where $0<\sigma<1$ is a parameter that controls the "sufficient decrease" in f(x), as by convexity $f(\theta)-f(x_k)\leq f'(\theta)^\top(\theta-x_k), \forall x_k,\theta\in\mathbb{R}^d$, by taking $\theta=x_k+\alpha_k d_k$

Procedure

- Start with an initial step size s (often s = 1).
- If the Armijo condition is not met, reduce α_k by multiplying it with a factor β (with $0 < \beta < 1$), and repeat until the condition holds.

Armijo Rule for Step Size Selection

Purpose of the Armijo Rule:

- The Armijo rule is used to select a step size α_k in descent methods, ensuring that each step decreases the objective function f(x) by a sufficient amount.
- It prevents steps that are too small (which slow down convergence) or too large (which may cause divergence).

Armijo Condition:

lacktriangle For a given descent direction d_k at x_k , the Armijo rule requires that α_k satisfies :

$$f(x_k + \alpha_k d_k) \le f(x_k) + \sigma \alpha_k \nabla f(x_k)^T d_k,$$

where $0 < \sigma < 1$ is a parameter that controls the "sufficient decrease" in f(x). as by convexity $f(\theta) - f(x_k) \le f'(\theta)^\top (\theta - x_k), \forall x_k, \theta \in \mathbb{R}^d$, by taking $\theta = x_k + \alpha_k d_k$

Procedure

- Start with an initial step size s (often s = 1).
- If the Armijo condition is not met, reduce α_k by multiplying it with a factor β (with $0 < \beta < 1$), and repeat until the condition holds.

Armijo Rule for Step Size Selection

Purpose of the Armijo Rule:

- The Armijo rule is used to select a step size α_k in descent methods, ensuring that each step decreases the objective function f(x) by a sufficient amount.
- It prevents steps that are too small (which slow down convergence) or too large (which may cause divergence).

Armijo Condition:

lacktriangle For a given descent direction d_k at x_k , the Armijo rule requires that α_k satisfies :

$$f(x_k + \alpha_k d_k) \le f(x_k) + \sigma \alpha_k \nabla f(x_k)^T d_k,$$

where $0 < \sigma < 1$ is a parameter that controls the "sufficient decrease" in f(x). as by convexity $f(\theta) - f(x_k) \le f'(\theta)^\top (\theta - x_k), \forall x_k, \theta \in \mathbb{R}^d$, by taking $\theta = x_k + \alpha_k d_k$

Procedure:

- Start with an initial step size s (often s = 1).
- If the Armijo condition is not met, reduce α_k by multiplying it with a factor β (with $0 < \beta < 1$), and repeat until the condition holds.

Algorithm 1 Pseudo Code for GD with linear search (Armijo's condition).

- (S0) Choose $x^0 \in \mathbb{R}^n$, $\sigma, \beta \in (0, 1)$, and put k := 0.
- (S1) If a convergence criterion is reached. STOP.
- (S2) Put $d^k := -\nabla f(x^k)$.
- (S3) Determine $\alpha_k > 0$ by

$$\alpha_k := \max_{l \in \mathbb{N}_0} \beta^{(l)} \quad \text{s.t.} \quad f(x^k + \beta^{(l)} d^k) \leq f(x^k) + \beta^{(l)} \sigma \nabla f(x^k)^T d^k.$$

- (S4) Update $x^{k+1} := x^k + \alpha_k d^k$
- (S4) $k \leftarrow k + 1$ and go to (S1).

comments