TC2: Optimization for Machine Learning

Master of Science in AI and Master of Science in Data Science @ UPSaclay 2025/2026.

FAÏCEL CHAMROUKHI

week 5: December 04, 2025.

Constrained optimization

 $((in) equality\ constraints,\ Duality/Lagrangian,\ KKT\ optimality\ conditions)$

Constrained Optimization Problem

- **Objective**: Minimize or maximize a function f(x) subject to constraints.
- General Form :

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & g_i(x) \leq 0, \quad i = 1, \dots, m \\ & & h_j(x) = 0, \quad j = 1, \dots, p \end{aligned}$$

- f(x): Objective function.
- $g_i(x)$: Inequality constraints.
- $h_j(x)$: Equality constraints.
- Budget limits in economics.
- Physical constraints in engineering.
- sparcity or regularity constraints in machine learning
- etc

Feasible Sets and Feasible Solutions I

1. Feasible Set:

- The feasible set (or feasible region) is the set of all points that satisfy the constraints of an optimization problem.
- Formally, for a problem with constraints $g_i(x) \le 0$ and $h_j(x) = 0$, the feasible set S is :

$$S = \{x \in \mathbb{R}^n \mid g_i(x) \le 0, \ h_j(x) = 0, \ \forall i, j\}$$

- Only points within this set can be considered as potential solutions to the optimization problem.
- Constraints restrict the feasible solutions domain, narrowing optimum search

2. Feasible Solution:

- lacksquare A feasible solution is any point $x \in S$ that satisfies all problem constraints.
- An optimal solution, if it exists, is a feasible solution that minimizes (or maximizes) the objective function within the feasible set.

Example

Example of feasible region for a set of linear inequality constraints.

■ Constraints for the feasible region :

$$x + y \le 4$$
$$x \ge 0$$
$$y \ge 0$$
$$y \le 3$$

- Plots of each constraint line :
 - y = 4 x: Boundary for $x + y \le 4$.
 - x = 0: Vertical line for x > 0.
 - y = 3: Horizontal line representing $y \le 3$.

Example

- The feasible region is the intersection of the regions defined by each constraint.
- The feasible region, represented by the shaded area, satisfies all specified constraints. Only points within this shaded area are feasible solutions

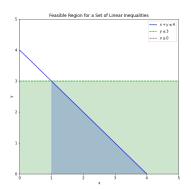


FIGURE - Feasible region for a set of linear inequalities : the constraints limit the solution space.

Mathematically

Mathematical tools help us handle constraints effectively.

Optimization with Equality Constraints

Consider the problem (will be referred to as the **primal problem**)

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $h_i(x) = 0, \quad j = 1, \dots, p$

Lagrange Multipliers Method:

■ The Lagrangian function is defined as :

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{j=1}^{p} \lambda_j h_j(x)$$

where λ_i are the Lagrange multipliers.

- **Dual problem**: minimize w.r.t x and λ_i 's the lagrangian $\mathcal{L}(x,\lambda)$
- Optimality conditions :

$$\nabla \mathcal{L}(x,\lambda) = 0$$
, $h_j(x) = 0$ for all j .

Optimization with Equality Constraints

Consider the problem (will be referred to as the **primal problem**)

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
 s.t. $h_j(x) = 0, \quad j = 1, \dots, p$

Lagrange Multipliers Method:

■ The Lagrangian function is defined as :

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{j=1}^{p} \lambda_j h_j(x),$$

where λ_i are the Lagrange multipliers.

- **Dual problem**: minimize w.r.t x and λ_i 's the lagrangian $\mathcal{L}(x,\lambda)$
- Optimality conditions :

$$\nabla \mathcal{L}(x,\lambda) = 0$$
, $h_j(x) = 0$ for all j .

Theorem : First-Order Optimality Conditions I

Theorem : Let x^* be a local minimum of f(x) subject to equality constraints $h_j(x)=0$ for $j=1,\ldots,p$. If x^* is a *regular point* (the gradients $\nabla h_1(x^*),\ldots,\nabla h_p(x^*)$ are linearly independent), there exist Lagrange multipliers $\lambda_1,\lambda_2,\ldots,\lambda_p$ such that :

$$\nabla f(x^*) + \sum_{j=1}^p \lambda_j \nabla h_j(x^*) = 0, \quad h_j(x^*) = 0, \quad j = 1, \dots, p.$$

- The condition $\nabla f(x^*) + \sum_{j=1}^p \lambda_j \nabla h_j(x^*) = 0$ ensures that the gradients of f(x) and the constraints $h_j(x)$ are aligned, defining a stationary point of the Lagrangian function.
- The equality constraints $h_j(x^*) = 0$ ensure feasibility of the solution x^* .
- A regular point ensures that the constraint gradients are linearly independent, avoiding degenerate or redundant constraints.

Optimization with Equality Constraints I

Example: [Practical work]

$$\min_{x \in \mathbb{R}^2} \quad f(x_1, x_2) = x_1^2 + x_2^2$$
 s.t.
$$h(x_1, x_2) = x_1 + x_2 - 1 = 0.$$

Using Lagrange Multipliers:

universite PARIS-SACLAY

■ The Lagrangian function is :

$$\mathcal{L}(x_1, x_2, \lambda) = x_1^2 + x_2^2 + \lambda(x_1 + x_2 - 1),$$

where λ is the Lagrange multiplier.

■ Optimality conditions : $\nabla \mathcal{L}(x_1, x_2, \lambda) = \mathbf{0}$. Compute partial derivatives :

$$\frac{\partial \mathcal{L}}{\partial x_1} = 2x_1 + \lambda = 0,$$
$$\frac{\partial \mathcal{L}}{\partial x_2} = 2x_2 + \lambda = 0,$$

I From $\frac{\partial \mathcal{L}}{\partial x_1} = 0$ and $\frac{\partial \mathcal{L}}{\partial x_2} = 0$, we have :

$$2x_1 + \lambda = 0 \quad \Longrightarrow \quad \lambda = -2x_1,$$

$$2x_2 + \lambda = 0 \quad \Longrightarrow \quad \lambda = -2x_2.$$

Equating the two expressions for $\lambda: -2x_1 = -2x_2 \implies x_1 = x_2$.

From the constraint : $h(x_1, x_2) = x_1 + x_2 - 1 = 0$: Substitute $x_1 = x_2$ into the constraint $x_1 + x_2 - 1 = 0$:

$$x_1 + x_1 = 1$$
 \Longrightarrow $x_1 = x_2 = \frac{1}{2}$.

3 The solution is : $x_1^* = \frac{1}{2}$, $x_2^* = \frac{1}{2}$, $\lambda^* = -1$.

Using Lagrange Multipliers:

universite PARIS-SACLAY

■ The Lagrangian function is :

$$\mathcal{L}(x_1, x_2, \lambda) = x_1^2 + x_2^2 + \lambda(x_1 + x_2 - 1),$$

where λ is the Lagrange multiplier.

■ Optimality conditions : $\nabla \mathcal{L}(x_1, x_2, \lambda) = \mathbf{0}$. Compute partial derivatives :

$$\frac{\partial \mathcal{L}}{\partial x_1} = 2x_1 + \lambda = 0,$$
$$\frac{\partial \mathcal{L}}{\partial x_2} = 2x_2 + \lambda = 0,$$

1 From $\frac{\partial \mathcal{L}}{\partial x_1} = 0$ and $\frac{\partial \mathcal{L}}{\partial x_2} = 0$, we have :

$$2x_1 + \lambda = 0 \quad \Longrightarrow \quad \lambda = -2x_1,$$

$$2x_2 + \lambda = 0 \implies \lambda = -2x_2.$$

Equating the two expressions for $\lambda: -2x_1 = -2x_2 \implies x_1 = x_2$.

2 From the constraint : $h(x_1,x_2)=x_1+x_2-1=0$: Substitute $x_1=x_2$ into the constraint $x_1+x_2-1=0$:

$$x_1 + x_1 = 1 \quad \Longrightarrow \quad x_1 = x_2 = \frac{1}{2}.$$

3 The solution is : $x_1^* = \frac{1}{2}$, $x_2^* = \frac{1}{2}$, $\lambda^* = -1$.

Optimization with Inequality Constraints

Remarks:

- If the regularity condition (linear independence of $\nabla h_j(x^*)$) is not satisfied, additional tools such as the Karush-Kuhn-Tucker (KKT) conditions are required to analyze the problem.
- Karush-Kuhn-Tucker (KKT) extend the method of Lagrange multipliers to handle inequality constraints.

Optimization with Inequality Constraints

Consider the optimization problem (primal form) :

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} & f(x) \\ & \text{s.t.} & g_i(x) \leq 0, \quad i = 1, \dots, m \\ & & h_j(x) = 0, \quad j = 1, \dots, p \end{aligned}$$

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) Conditions are necessary conditions to check optimality in problems involving both equality and inequality constraints. They extend the method of Lagrange multipliers to handle inequality constraints.

the Lagrangian :
$$\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^p \mu_j h_j(x).$$

Stationarity : The gradient of the Lagrangian w.r.t solution x must be zero :

$$\nabla \mathcal{L}(x,\lambda,\mu) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{j=1}^{\ell} \mu_j \nabla h_j(x) = 0.$$

Primal feasibility: The solution x must satisfy all the constraints:

$$g_i(x) \le 0, \quad h_j(x) = 0.$$

- **Dual feasibility**: The Lagrange multipliers $\lambda_i \geq 0$ for inequality constraints.
- **Complementary slackness**: For each i, either $\lambda_i = 0$ or $g_i(x) = 0$:

$$\lambda_i \cdot g_i(x) = 0, \quad \forall i = 1, \dots, m.$$

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) Conditions are necessary conditions to check optimality in problems involving both equality and inequality constraints. They extend the method of Lagrange multipliers to handle inequality constraints.

the Lagrangian :
$$\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^p \mu_j h_j(x)$$
.

Stationarity: The gradient of the Lagrangian w.r.t solution x must be zero :

$$\nabla \mathcal{L}(x,\lambda,\mu) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{j=1}^{\ell} \mu_j \nabla h_j(x) = 0.$$

Primal feasibility: The solution x must satisfy all the constraints:

$$g_i(x) \le 0, \quad h_j(x) = 0.$$

- **Dual feasibility**: The Lagrange multipliers $\lambda_i \geq 0$ for inequality constraints.
- Complementary slackness : For each i, either $\lambda_i = 0$ or $g_i(x) = 0$:

$$\lambda_i \cdot g_i(x) = 0, \quad \forall i = 1, \dots, m.$$

Stationarity Condition

Stationarity:

$$\nabla \mathcal{L}(x,\lambda,\mu) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{j=1}^{p} \mu_j \nabla h_j(x) = 0.$$

Interpretation:

- At the optimal solution x^* , the gradient of the objective function f(x) is balanced by the gradients of the active constraints $g_i(x)$ and $h_j(x)$.
- This condition ensures no further improvement in f(x) is possible while satisfying the constraints.

Primal Feasibility

Primal Feasibility:

$$g_i(x) \le 0, \quad h_j(x) = 0.$$

Interpretation:

- The solution x^* must satisfy :
 - ▶ All inequality constraints $(g_i(x) \le 0)$,
 - ▶ All equality constraints $(h_j(x) = 0)$.
- Primal feasibility ensures the solution lies in the feasible region of the optimization problem.

Dual Feasibility

Dual Feasibility:

$$\lambda_i \geq 0, \quad \forall i = 1, \dots, m.$$

Interpretation:

- The Lagrange multipliers λ_i associated with the inequality constraints must be non-negative.
- If $\lambda_i > 0$ this indicates the corresponding constraint $g_i(x)$ is active $(g_i(x) = 0)$.
- If $\lambda_i = 0$, the corresponding inequality constraint $g_i(x)$ is inactive $(g_i(x) < 0)$.

Complementary Slackness

Complementary Slackness:

$$\lambda_i \cdot g_i(x) = 0, \quad \forall i = 1, \dots, m.$$

This implies one of the two things must be true for each constraint :

Interpretation:

- If $\lambda_i > 0$, then $g_i(x) = 0$, meaning the constraint is **active** and **binding** at the solution.
- If $g_i(x) < 0$, then $\lambda_i = 0$, meaning the constraint is **inactive** and does not affect the optimality condition.
- Complementary slackness ensures that inactive constraints do not influence the solution.

Hence the name *complementary slackness*

- Either the constraint is **tight** (no slack, i.e., $g_i(x) = 0$) and it affects the optimum (the multiplier $\lambda_i \neq 0$);
- Or it is **slack** (strictly satisfied, i.e., $g_i(x) < 0$) and it does not affect the solution (the multiplier $\lambda_i = 0$).

Complementary Slackness

Complementary Slackness:

$$\lambda_i \cdot g_i(x) = 0, \quad \forall i = 1, \dots, m.$$

This implies one of the two things must be true for each constraint :

Interpretation:

- If $\lambda_i > 0$, then $g_i(x) = 0$, meaning the constraint is **active** and **binding** at the solution.
- If $g_i(x) < 0$, then $\lambda_i = 0$, meaning the constraint is **inactive** and does not affect the optimality condition.
- Complementary slackness ensures that inactive constraints do not influence the solution.

Hence the name *complementary slackness* :

- Either the constraint is **tight** (no slack, i.e., $g_i(x) = 0$) and it affects the optimum (the multiplier $\lambda_i \neq 0$);
- Or it is **slack** (strictly satisfied, i.e., $g_i(x) < 0$) and it does not affect the solution (the multiplier $\lambda_i = 0$).

Summary

Summary of KKT Conditions:

- Stationarity: Ensures that the gradient of the objective function is aligned with the gradients of the active constraints.
- Primal Feasibility: Guarantees the solution lies within the feasible region.
- Dual Feasibility : Ensures the Lagrange multipliers λ_i are meaningful (non-negative).
- Complementary Slackness: Eliminates the influence of inactive constraints on the solution.

Optimality Check:

lacktriangle Together, these conditions provide a framework to verify whether a candidate solution x^* is optimal in constrained optimization problems.

Summary

- Inequality constraints become **active** when $g_i(x^*) = 0$, contributing to the optimality conditions through $\lambda_i > 0$.
- Inactive constraints $(g_i(x^*) < 0)$ have $\lambda_i = 0$, meaning they do not influence the solution.
- Complementary slackness ensures that inactive constraints (those with $g_i(x^*) < 0$) do not contribute to the optimality condition.
- Equality constraints $(h_j(x^*) = 0)$ are always active and satisfied exactly.
- The gradient of the resulting objective function is a linear combination of the gradients of the active constraints: The gradients of f(x), $g_i(x)$, and $h_j(x)$ at x^* reflecting a balance between optimizing the objective function and respecting the constraints.

Second-Order Optimality Conditions

- Second-order conditions extend the KKT (first optimality) conditions to ensure a critical point satisfying KKT (a local minimum, maximum, (or saddle point)) is a local optimum.
- Hessian of the Lagrangian :

$$H = \nabla^2 f(x) + \sum_i \lambda_i \nabla^2 g_i(x) + \sum_j \mu_j \nabla^2 h_j(x)$$

 \blacksquare Second-Order Sufficiency : For a minimization problem, $d^THd>0$ for all $d\neq 0$ satisfying :

$$abla g_i(x)^T d = 0$$
 (active inequality constraints)
$$abla h_i(x)^T d = 0$$
 (equality constraints).

Second-Order Necessity : $d^T H d \ge 0$ for all $d \ne 0$ satisfying the same constraint conditions as SOSC.

Theorem: KKT Conditions

Theorem: Let f(x), $g_i(x)$, and $h_j(x)$ be continuously differentiable. If x^* is a local minimum and satisfies certain regularity conditions, then there exist $\lambda_i \geq 0$ and μ_j such that the KKT conditions hold.

Duality

Definition:

■ The dual function, $\varphi(\lambda,\mu)$, is obtained by minimizing the Lagrangian with respect to the primal variable x :

$$\varphi(\lambda, \mu) = \inf_{x} \mathcal{L}(x, \lambda, \mu).$$

- The dual function $\varphi(\lambda,\mu)$ provides a lower bound to the primal problem for any $\lambda \geq 0$ and any μ .
- The dual function is always concave (the inf of an affine transformation is a concave function, and $\mathcal L$ is a linear combination of λ and μ , so produces a function that is concave in λ and μ , regardless of whether $\mathcal L$ is convex or not in x.

Dual function importance

- **Duality Gap**: The difference between the primal optimal value $f(x^*)$ and the dual optimal value $\varphi(\lambda^*, \mu^*)$, known as the **duality gap**, quantifies how close the solution of the dual problem is to the solution of the primal problem.
- If the duality gap is zero, the dual solution exactly matches the primal solution, indicating perfect alignment between the two.

Duality and Lagrangian Function

Dual Problem:

lacktriangle The dual problem is derived by minimizing the Lagrangian over x:

$$\varphi(\lambda^*, \mu^*) = \inf_x \mathcal{L}(x, \lambda, \mu).$$

■ The dual problem is (recall the dual function is concave in λ and μ) :

$$\max_{\lambda \ge 0, \mu} \varphi(\lambda^*, \mu^*).$$

■ Weak Duality:

$$f(x^*) \ge \varphi(\lambda^*, \mu^*).$$

■ Strong Duality: If strong duality holds:

$$\varphi(\lambda^*, \mu^*) = f(x^*),$$

where x^* is the optimal solution of the primal problem, and (λ^*, μ^*) are the optimal dual variables.

Strong Duality

Strong Duality:

 $\blacksquare \ \, \text{If strong duality holds,} \, \, f(x^*) = \varphi(\lambda^*,\mu^*). \\$

Theorem: (Slater's Condition) For a convex optimization problem, if there exists a strictly feasible point x (one that satisfies $g_i(x) < 0, h_j(x) = 0$), then strong duality holds.

- Strong duality ensures that solving the dual problem gives the exact same result as solving the primal problem :
 - ightharpoonup primal problem (minimizing the original objective function, i.e. f s.t. the constraints),
 - dual problem (maximizing the dual function, ie. the Lagrangian \mathcal{L}).

Duality: Summary

- Duality consists of associating to every constrained minimization problem (the primal problem) another problem called the dual problem.
- Duality connects a constrained optimization problem (primal) to an associated maximization problem (dual), built from the Lagrangian function.
 - ► The dual function always provides a lower bound to the primal optimal value;

 this is known as weak duality.
 - ► Under suitable conditions such as convexity and Slater's condition, the primal and dual problems have the same optimal value;

 this is known as strong duality. In this case, the duality gap is zero, and solving the dual problem yields the same optimal value as solving the primal one.