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Scientific context

Heterogeneous regression data
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Cluster 1

Cluster 2

Expert mean 1

Expert mean 2

Regression data issued from different underlying unknown processes

Data with possibly asymmetric distributions

Objectives

Derive a statistical model to fit at best the data

make prediction on future observations; cluster the data

Deal with skewness in the data distribution
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Scientific context

Analysis of clustered regression data

↪→ exploratory analysis

↪→ predictive analysis: make decision for future data

Modeling framework

Latent variable models : f(x|θ) =
∫
z
f(x, z|θ)dz

generative formulation :
z ∼ q(z|θ)

x|z ∼ f(x|z,θ)

↪→ Mixture models : f(x|θ) =
∑
k πkfk(x|θ)

↪→ density estimation for regression and clustering

↪→ Infer θ from the data
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Related work

Observed pairs of data (x, y) where y ∈ R is the response for some
covariate x ∈ Rp governed by a hidden categorical random variable Z

Mixture of regressions

f(y|x;Ψ) =

K∑
k=1

πkfk(y|x;Ψk)

Bai et al. (2012); Wei (2012), Ingrassia et al. (2012) regression

mixture based on the t distribution

Song et al. (2014): robust regression mixture based on the Laplace

distribution

Zeller et al. (2015) : regression mixture based on scale mixtures of

skew-normal distributions

↪→ A mixture of experts (MoE) framework (Jacobs et al., 1991; Jordan

and Jacobs, 1994)

Parameter vector: Ψ = (αT1 , . . . ,α
T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T where

Ψk = (βTk , σ
2
k, λk, νk)

T is the parameter vector for the kth skew t expert
component whose density is defined by

Objective

Overcome the limitation of modeling with the normal distribution.

↪→ Not adapted for a set of data containing a group or groups of

observations with asymmetric behavior
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Mixture of Experts (MoE) modeling framework

Observed pairs of data (x, y) where y ∈ R is the response for some covariate

x ∈ Rp governed by a hidden categorical random variable Z

Mixture of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs, 1994) :

f(y|x;Ψ) =

K∑
k=1

πk(r;α)︸ ︷︷ ︸
Gating network

fk(y|x;Ψk)︸ ︷︷ ︸
Experts

Gating function of some predictors r ∈ Rq: πk(r;α) =
exp (αT

k r)∑K
`=1 exp (αT

` r)

MoE for regression usually use normal experts fk(y|x;Ψk)

Objective

Overcome the limitation of modeling with the normal distribution.

↪→ Not adapted for a set of data containing a group or groups of

observations with asymmetric behavior
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Non-normal mixtures of experts

Li et al. (2010): Bayesian mixture of asymmetric t experts

Nguyen and McLachlan (2016): Mixture of Laplace experts

Chamroukhi (2016): Robust mixture of t experts

Skew-Normal Mixtures of Experts

the Skew-Normal MoE (SNMoE) accommodates skewness and is adapted to

clustered regression data

Corresponds to the extension of the mixture of skew-normal distributions

(Lin et al., 2007) to the MoE modeling framework
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The SNMoE model

A K-component mixture of skew-normal experts (SNMoE) is defined by:

f(y|r,x;Ψ) =

K∑
k=1

πk(r;α) SN(y;µ(x;βk), σ2
k, λk)

kth expert: has skew-normal distribution (Azzalini, 1985, 1986):

f
(
y|x;µ(x;βk), σ2, λ

)
=

2

σ
φ(
y − µ(x;βk)

σ
)Φ

(
λ(
y − µ(x;βk)

σ
)

)
where φ(.) and Φ(.) denote, respectively, the pdf and the cdf of the standard

normal distribution.

↪→ For {λk} → 0, the SNMoE reduces to the NMoE.

↪→ The SNMoE generalizes th normal MoE models to accommodate data

with asymmetric behavior
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Representation of the SNMoE model

Let Zik be the latent binary component-indicators such that Zik = 1 iff

Zi = k, Zi being the hidden class label of the ith observation, we have the

following generative model :

Hierarchical representation

Yi|ui, Zik = 1,xi ∼ N
(
µ(xi;βk) + δk|ui|, (1− δ2k)σ2k

)
,

Ui|Zik = 1 ∼ N(0, σ2k),

Zi|ri ∼ Mult (1;π1(ri;α), . . . , πK(ri;α))

where Zi = (Zi1, . . . , ZiK) is the binary indicator vector and

δk = λk√
1+λ2k

is the skewness.

The variables Ui and Zi are hidden variables.
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Parameter estimation via the ECM algorithm

Parameter vector: Ψ = (αT1 , . . . ,α
T
K−1,θ

T
1 , . . . ,θ

T
K)T where

θk = (βTk , σ
2
k, λk)T

Maximize the observed-data log-likelihood given an observed i.i.d sample of

n observations {yi,xi, ri}ni=1:

logL(Ψ) =

n∑
i=1

log

K∑
k=1

πk(ri;α)SN(y;µ(xi;βk), σ2
k, λk) ·

↪→ iteratively by the ECM algorithm (Meng and Rubin, 1993)

The complete-data log-likelihood where the complete-data are

{yi,xi, ri, zi, ui}ni=1, is given by:

logLc(Ψ) = logL1c(α) +

K∑
k=1

logL2c(θk)

logL1c(α)=
n∑
i=1

K∑
k=1

Zik log πk(ri;α),

logL2c(θk)=
n∑
i=1

Zik

[
− log(2πσ2

k)−
1

2
log(1− δ2k)−

d2ik
2(1− δ2k)

+
Ui δk dik

(1− δ2k)σk
−

U2
i

2(1− δ2k)σ
2
k

]
where dik = yi−µ(xi;βk)

σk
.
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MLE via the ECM algorithm: E-Step

E-Step Calculates the conditional expectation of the complete-data
log-likelihood, given the observed data and a current estimation Ψ (m):

Q(Ψ ;Ψ (m)) = Q1(α;Ψ
(m)) +

K∑
k=1

Q2(θk,Ψ
(m)),

where

Q1(α;Ψ
(m)) =

n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α),

Q2(θk;Ψ
(m)) =

n∑
i=1

τ
(m)
ik

[
− log(σ2

k)−
1

2
log(1− δ2k)−

d2ik
2(1− δ2k)

+
δk dik e

(m)
1,ik

(1− δ2k)σk
−

e
(m)
2,ik

2(1− δ2k)σ
2
k

]
.

↪→ requires the following conditional expectations:

τ
(m)
ik = EΨ (m) [Zik|yi,xi, ri] ,

e
(m)
1,ik = EΨ (m) [Ui|yi, Zik = 1,xi, ri] ,

e
(m)
2,ik = EΨ (m)

[
U2
i |yi, Zik = 1,xi, ri

]
·

↪→ Analytic solutions
Faicel Chamroukhi Skew-Normal Mixture of Experts 11/24



SNMoE: M-Step of the ECM algorithm

CM-Steps: Ψ (m+1) = argmaxΨ∈ΩQ(Ψ ;Ψ (m))

1 update the mixing parameters α(m+1) by:

α(m+1) = argmax
α

n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α)

↪→ Iteratively Reweighted Least Squares (IRLS) algorithm

α(l+1) = α(l) −
[∂2Q1(α,Ψ (q))

∂α∂αT

]−1
α=α(l)

∂Q1(α,Ψ (q))

∂α

∣∣∣
α=α(l)

I A convex optimization problem
I Analytic calculation of the Hessian and the gradient
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ECM algorithm for the SNMoE: M-Step

2 Update the regression params (β
T (m+1)
k , σ2

k
(m+1)

): For the polynomial

regressors: µ(x;βk) = βTk x we have analytic weighted regressions updates:

β
(m+1)
k =

[ n∑
i=1

τ
(m)
ik xix

T
i

]−1
n∑
i=1

τ
(m)
ik

(
yi − e

(m)
1,ikδ

(m)
k

)
xi,

σ2
k
(m+1)

=

∑n
i=1 τ

(m)
ik

[ (
yi − βTk

(m+1)
xi

)2
− 2δ

(m)
k e

(m)
1,ik(yi − β

T
k
(m+1)

xi) + e
(m)
2,ik

]
2
(
1− δ2k

(m)
)∑n

i=1 τ
(m)
ik

·

3 Update the skewness parameters δk as solution of

δk(1− δ
2
k)

n∑
i=1

τ
(m)
ik

+ (1 + δ
2
k)

n∑
i=1

τ
(m)
ik

d
(m+1)
ik

e
(m)
1,ik

σ
(m+1)
k

− δk
n∑

i=1

τ
(m)
ik

[
d
2
ik

(m+1)
+

e
(m)
2,ik

σ2
k
(m+1)

]
= 0 ·

↪→ Use a root finding algorithm, such as Brent’s method (Brent, 1973)
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Prediction, clustering, model selection

Prediction Predicted response: ŷ = EΨ̂ (Y |r,x)

Component mean : EΨ̂ (Y |Z = k,x) = β̂
T
k x+

√
2
π
δ̂k σ̂k

The mean of the SNMoE model : EΨ̂ (Y |x, r) =
∑K
k=1 πk(r; α̂)

(
β̂
T
k x+

√
2
π
δ̂kσ̂k

)
.

Clustering of regression data Calculate the cluster label as

ẑi = arg
K

max
k=1

E[Zi|ri,xi; Ψ̂ ] = arg
K

max
k=1

P(Zi = k|ri,xi; Ψ̂)

Model selection The value of (K, p) can be computed by using

BIC, ICL

Number of free parameters: ηΨ = K(p+ q + 3)− q.
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A toy example
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Figure: Fitting the NMoE model and the proposed SNMoE to the toy data set analyzed in

Bishop and Svensén (2003): yi = xi + 0.3 sin(2πxi) + εi, with εi drawn from a zero mean

Normal distribution with standard deviation 0.05 and xi generated uniformly in (0, 1)
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Simulated data from a mixture of two linear experts
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Figure: Fitted SNMoE to data generated according to the NMoE (top) and the SNMoE

(bottom).
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Two real datasets

Tone perception data

Temperature anomalies data
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Figure: Scatter plot of the tone perception data (left) and the temperature anomalies data

(right).
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Temperature anomalies data set

Data have been analyzed earlier by Hansen et al. (1999, 2001) and recently by

Nguyen and McLachlan (2016) by using Laplace mixture of linear experts

n = 135 yearly measurements of the global annual temperature anomalies for the

period of 1882− 2012.
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Figure: Fitting the MoLE models to the temperature anomalies data set.
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The SNMoE fit provides a skewness close to zero, which tends to

approach a normal distribution.

The regression coefficients are similar to those found by Nguyen and

McLachlan (2016) who used a Laplace mixture of linear experts.

Model selection : Except the result provided by AIC for the NMoE

model, which overestimates the number of components, all the others

results provide evidence for two components in the data.

NMoE SNMoE

K BIC AIC ICL BIC AIC ICL

1 46.0623 50.4202 46.0623 43.6096 49.4202 43.6096

2 79.9163 91.5374 79.6241 75.0116 89.5380 74.7395

3 71.3963 90.2806 58.4874 63.9254 87.1676 50.8704

4 66.7276 92.8751 54.7524 55.4731 87.4312 41.1699

5 59.5100 92.9206 51.2429 45.3469 86.0207 41.0906

Table: Choosing the number of expert components K for the temperature anomalies data.
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Tone perception data set

Recently studied by Bai et al. (2012) and Song et al. (2014) by using, respectively,

robust t regression mixture and Laplace regression mixture

Data consist of n = 150 pairs of “tuned” variables, considered here as predictors

(x), and their corresponding “strech ratio” variables considered as responses (y).
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Figure: Fitting the MoE models to the tone data set
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Model selection

NMoE SNMoE

K BIC AIC ICL BIC AIC ICL

1 1.8662 6.3821 1.8662 -0.6391 5.3821 -0.6391

2 122.8050 134.8476 107.3840 117.7939 132.8471 102.4049

3 118.1939 137.7630 76.5249 122.8725 146.9576 98.0442

4 121.7031 148.7989 94.4606 109.5917 142.7087 97.6108

5 141.6961 176.3184 123.6550 107.2795 149.4284 96.6832

Table: Choosing the number of experts K for the original tone perception data.

the number of components is overestimated with the NMoE model

AIC performs poorly for the two models

BIC and ICL are the suggested criteria for the analysis of this data, with the

SNMoE model, which is more adapted.
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Summary

The SNMoE model is suggested for heterogeneous regression data

it is also dedicated to accommodate regression data with possibly

non-symmetric distribution

Outputs: density estimation, non-linear regression function

approximation and clustering for regression data

The model selection using information criteria tends to promote using

BIC and ICL against AIC

Perspectives

A work under review is on robust skew mixture of experts

Here we only considered the MoE in their standard (non-hierarchical)

version. ↪→ One interesting future direction is to extend it to the

hierarchical MoE framework (Jordan and Jacobs, 1994).

extension to multivariate regression
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Thank you!
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Identifiability of the SNMoE model

f(.;Ψ) is identifiable when f(.;Ψ) = f(.;Ψ?) if and only if Ψ = Ψ?.

Ordered, initialized, and irreducible SNMoEs are identifiable:

Ordered implies that there exist a certain ordering relationship such that

(βT1 , σ
2
1 , λ1)T ≺ . . . ≺ (βTK , σ

2
K , λK)T ;

initialized implies that αK is the null vector, as assumed in the model

irreducible implies that if k 6= k′, then one of the following conditions holds:

βk 6= βk′, σk 6= σk′ or λk 6= λk′.

⇒ Then, we can establish the identifiability of ordered and initialized irreducible

SNMoE models by applying Lemma 2 of Jiang and Tanner (1999), which requires

the validation of the following nondegeneracy condition:

The set {SN(y;µ(x;β1), σ2
1 , λ1), . . . ,SN(y;µ(x;β3K), σ2

3K , λ3K)} contains

3K linearly independent functions of y, for any 3K distinct triplet

(µ(x;βk), σ2
k, λk) for k = 1, . . . , 3K.

↪→ Thus, via Lemma 2 of Jiang and Tanner (1999) we have any ordered and

initialized irreducible SNMoE is identifiable.
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