Skew-Normal Mixture of Experts

FAICEL CHAMROUKHI

IJCNN 2016, Vancouver

July 27, 2016

Scientific context

Heterogeneous regression data

Regression data issued from different underlying unknown processes

Data with possibly asymmetric distributions

Objectives

- Derive a statistical model to fit at best the data
- make prediction on future observations; cluster the data
- Deal with skewness in the data distribution

Scientific context

Analysis of clustered regression data

 $\hookrightarrow \mathsf{exploratory} \ \mathsf{analysis}$

 \hookrightarrow predictive analysis: make decision for future data

Modeling framework

• Latent variable models : $f(x|\theta) = \int_{z} f(x, z|\theta) dz$ generative formulation : $z \sim q(z|\theta)$

$$x|\mathbf{z} \sim f(x|\mathbf{z}, \boldsymbol{\theta})$$

- $\,\, \hookrightarrow \,\, {
 m Mixture \ models} : \, f(x|{m heta}) = \sum_k \pi_k f_k(x|{m heta})$
- $\,\hookrightarrow\,$ density estimation for regression and clustering
- $\,\,\hookrightarrow\,\,$ Infer ${oldsymbol{ heta}}$ from the data

Outline

- 1 Introduction and context
- 2 Related work
- **3** Skew-Normal Mixtures of Experts
- 4 Experiments
- 5 Conclusion and perspectives

Related work

Observed pairs of data (x, y) where $y \in \mathbb{R}$ is the response for some covariate $x \in \mathbb{R}^p$ governed by a hidden categorical random variable Z

Mixture of regressions

$$f(y|oldsymbol{x};oldsymbol{\Psi}) \;\;=\;\; \sum_{k=1}^K \pi_k f_k(y|oldsymbol{x};oldsymbol{\Psi}_k)$$

- Bai et al. (2012); Wei (2012), Ingrassia et al. (2012) regression mixture based on the t distribution
- Song et al. (2014): robust regression mixture based on the Laplace distribution
- Zeller et al. (2015) : regression mixture based on scale mixtures of skew-normal distributions

 \hookrightarrow A mixture of experts (MoE) framework (Jacobs et al., 1991; Jordan and Jacobs, 1994)

Mixture of Experts (MoE) modeling framework

- Observed pairs of data (x, y) where $y \in \mathbb{R}$ is the response for some covariate $x \in \mathbb{R}^p$ governed by a hidden categorical random variable Z
- Mixture of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs, 1994) :

$$f(y|\boldsymbol{x};\boldsymbol{\Psi}) = \sum_{k=1}^{K} \underbrace{\pi_k(\boldsymbol{r};\boldsymbol{\alpha})}_{\text{Gating network}} \underbrace{f_k(y|\boldsymbol{x};\boldsymbol{\Psi}_k)}_{\text{Experts}}$$

- Gating function of some predictors $m{r} \in \mathbb{R}^q$: $\pi_k(m{r};m{lpha}) = rac{\exp{(m{lpha}_k^Tm{r})}}{\sum_{k=1}^K \exp{(m{lpha}_k^Tm{r})}}$
- MoE for regression usually use normal experts $f_k(y|\boldsymbol{x};\boldsymbol{\varPsi}_k)$

Objective

• Overcome the limitation of modeling with the normal distribution.

 \hookrightarrow Not adapted for a set of data containing a group or groups of observations with asymmetric behavior

Non-normal mixtures of experts

- Li et al. (2010): Bayesian mixture of asymmetric t experts
- Nguyen and McLachlan (2016): Mixture of Laplace experts
- Chamroukhi (2016): Robust mixture of t experts

Skew-Normal Mixtures of Experts

- the Skew-Normal MoE (SNMoE) accommodates skewness and is adapted to clustered regression data
- Corresponds to the extension of the mixture of skew-normal distributions (Lin et al., 2007) to the MoE modeling framework

The SNMoE model

A *K*-component mixture of skew-normal experts (SNMoE) is defined by:

$$f(y|\boldsymbol{r}, \boldsymbol{x}; \boldsymbol{\Psi}) = \sum_{k=1}^{K} \pi_k(\boldsymbol{r}; \boldsymbol{\alpha}) \operatorname{SN}(y; \mu(\boldsymbol{x}; \boldsymbol{\beta}_k), \sigma_k^2, \boldsymbol{\lambda}_k)$$

■ *k*th expert: has skew-normal distribution (Azzalini, 1985, 1986):

$$f\left(y|\boldsymbol{x}; \boldsymbol{\mu}(\boldsymbol{x}; \boldsymbol{\beta}_k), \sigma^2, \lambda\right) = \frac{2}{\sigma} \phi(\frac{y - \boldsymbol{\mu}(\boldsymbol{x}; \boldsymbol{\beta}_k)}{\sigma}) \Phi\left(\lambda(\frac{y - \boldsymbol{\mu}(\boldsymbol{x}; \boldsymbol{\beta}_k)}{\sigma})\right)$$

where $\phi(.)$ and $\Phi(.)$ denote, respectively, the pdf and the cdf of the standard normal distribution.

\hookrightarrow For $\{\lambda_k\} \to 0$, the SNMoE reduces to the NMoE.

 \hookrightarrow The SNMoE generalizes th normal MoE models to accommodate data with asymmetric behavior

Representation of the SNMoE model

Let Z_{ik} be the *latent* binary component-indicators such that $Z_{ik} = 1$ iff $Z_i = k$, Z_i being the hidden class label of the *i*th observation, we have the following generative model :

Hierarchical representation

$$\begin{split} Y_i | \boldsymbol{u_i}, \boldsymbol{Z_{ik}} &= 1, \boldsymbol{x_i} \quad \sim \quad \mathsf{N}\Big(\mu(\boldsymbol{x}_i; \boldsymbol{\beta}_k) + \delta_k |\boldsymbol{u}_i|, (1 - \delta_k^2) \sigma_k^2\Big), \\ \boldsymbol{U_i} | \boldsymbol{Z_{ik}} &= 1 \quad \sim \quad \mathsf{N}(0, \sigma_k^2), \\ \boldsymbol{Z_i} | \boldsymbol{r}_i \quad \sim \quad \mathsf{Mult}\left(1; \pi_1(\boldsymbol{r}_i; \boldsymbol{\alpha}), \dots, \pi_K(\boldsymbol{r}_i; \boldsymbol{\alpha})\right) \end{split}$$

where $\mathbf{Z}_i = (Z_{i1}, \dots, Z_{iK})$ is the binary indicator vector and $\delta_k = \frac{\lambda_k}{\sqrt{1+\lambda_k^2}}$ is the skewness. The variables U_i and Z_i are hidden variables.

Parameter estimation via the ECM algorithm

- Parameter vector: $\boldsymbol{\Psi} = (\boldsymbol{\alpha}_1^T, \dots, \boldsymbol{\alpha}_{K-1}^T, \boldsymbol{\theta}_1^T, \dots, \boldsymbol{\theta}_K^T)^T$ where $\boldsymbol{\theta}_k = (\boldsymbol{\beta}_k^T, \sigma_k^2, \lambda_k)^T$
- Maximize the observed-data log-likelihood given an observed i.i.d sample of n observations {y_i, x_i, r_i}ⁿ_{i=1}:

$$\log L(\boldsymbol{\Psi}) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_k(\boldsymbol{r}_i; \boldsymbol{\alpha}) \mathsf{SN}(y; \mu(\boldsymbol{x}_i; \boldsymbol{\beta}_k), \sigma_k^2, \lambda_k) \cdot$$

 \hookrightarrow iteratively by the ECM algorithm (Meng and Rubin, 1993)

• The complete-data log-likelihood where the complete-data are $\{y_i, x_i, r_i, z_i, u_i\}_{i=1}^n$, is given by:

$$\log L_c(\boldsymbol{\Psi}) = \log L_{1c}(\boldsymbol{\alpha}) + \sum_{k=1}^{K} \log L_{2c}(\boldsymbol{\theta}_k)$$
$$\log L_{1c}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \sum_{k=1}^{K} Z_{ik} \log \pi_k(\boldsymbol{r}_i; \boldsymbol{\alpha}),$$
$$\log L_{2c}(\boldsymbol{\theta}_k) = \sum_{i=1}^{n} Z_{ik} \left[-\log(2\pi\sigma_k^2) - \frac{1}{2}\log(1-\delta_k^2) - \frac{d_{ik}^2}{2(1-\delta_k^2)} + \frac{U_i \ \delta_k \ d_{ik}}{(1-\delta_k^2)\sigma_k} - \frac{U_i^2}{2(1-\delta_k^2)\sigma_k^2} \right]$$
where $d_{ik} = \frac{y_i - \mu(\boldsymbol{x}_i; \boldsymbol{\beta}_k)}{2(1-\delta_k^2)}.$

MLE via the ECM algorithm: E-Step

E-Step Calculates the conditional expectation of the complete-data log-likelihood, given the observed data and a current estimation $\Psi^{(m)}$:

$$Q(\boldsymbol{\Psi};\boldsymbol{\Psi}^{(m)}) = Q_1(\boldsymbol{\alpha};\boldsymbol{\Psi}^{(m)}) + \sum_{k=1}^{K} Q_2(\boldsymbol{\theta}_k,\boldsymbol{\Psi}^{(m)}),$$

where

$$Q_{1}(\boldsymbol{\alpha}; \boldsymbol{\Psi}^{(m)}) = \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(m)} \log \pi_{k}(\boldsymbol{r}_{i}; \boldsymbol{\alpha}),$$

$$Q_{2}(\boldsymbol{\theta}_{k}; \boldsymbol{\Psi}^{(m)}) = \sum_{i=1}^{n} \tau_{ik}^{(m)} \left[-\log(\sigma_{k}^{2}) - \frac{1}{2}\log(1 - \delta_{k}^{2}) - \frac{d_{ik}^{2}}{2(1 - \delta_{k}^{2})} + \frac{\delta_{k} \ d_{ik} \ \boldsymbol{e}_{1,ik}^{(m)}}{(1 - \delta_{k}^{2})\sigma_{k}} - \frac{\boldsymbol{e}_{2,ik}^{(m)}}{2(1 - \delta_{k}^{2})\sigma_{k}^{2}} \right].$$

 \hookrightarrow requires the following conditional expectations:

$$\begin{split} \tau_{ik}^{(m)} &= & \mathbb{E}_{\Psi^{(m)}} \left[Z_{ik} | y_i, \boldsymbol{x}_i, \boldsymbol{r}_i \right], \\ e_{1,ik}^{(m)} &= & \mathbb{E}_{\Psi^{(m)}} \left[U_i | y_i, Z_{ik} = 1, \boldsymbol{x}_i, \boldsymbol{r}_i \right], \\ e_{2,ik}^{(m)} &= & \mathbb{E}_{\Psi^{(m)}} \left[U_i^2 | y_i, Z_{ik} = 1, \boldsymbol{x}_i, \boldsymbol{r}_i \right]. \end{split}$$

 $\hookrightarrow \mathsf{Analytic} \text{ solutions}$

SNMoE: M-Step of the ECM algorithm

CM-Steps:
$$\boldsymbol{\Psi}^{(m+1)} = \arg \max_{\boldsymbol{\Psi} \in \boldsymbol{\Omega}} Q(\boldsymbol{\Psi}; \boldsymbol{\Psi}^{(m)})$$

1 update the mixing parameters $\alpha^{(m+1)}$ by:

$$\boldsymbol{\alpha}^{(m+1)} = \arg \max_{\boldsymbol{\alpha}} \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(m)} \log \pi_k(\boldsymbol{r}_i; \boldsymbol{\alpha})$$

 \hookrightarrow Iteratively Reweighted Least Squares (IRLS) algorithm

$$\boldsymbol{\alpha}^{(l+1)} = \boldsymbol{\alpha}^{(l)} - \left[\frac{\partial^2 Q_1(\boldsymbol{\alpha}, \boldsymbol{\Psi}^{(q)})}{\partial \boldsymbol{\alpha} \partial \boldsymbol{\alpha}^T}\right]_{\boldsymbol{\alpha} = \boldsymbol{\alpha}^{(l)}}^{-1} \frac{\partial Q_1(\boldsymbol{\alpha}, \boldsymbol{\Psi}^{(q)})}{\partial \boldsymbol{\alpha}}\Big|_{\boldsymbol{\alpha} = \boldsymbol{\alpha}^{(l)}}$$

- A convex optimization problem
- Analytic calculation of the Hessian and the gradient

ECM algorithm for the SNMoE: M-Step

2 Update the regression params $(\beta_k^{T(m+1)}, \sigma_k^{2(m+1)})$: For the polynomial regressors: $\mu(x; \beta_k) = \beta_k^T x$ we have analytic weighted regressions updates:

$$\boldsymbol{\beta}_{k}^{(m+1)} = \left[\sum_{i=1}^{n} \tau_{ik}^{(m)} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right]^{-1} \sum_{i=1}^{n} \tau_{ik}^{(m)} \left(y_{i} - \boldsymbol{e}_{1,ik}^{(m)} \delta_{k}^{(m)}\right) \boldsymbol{x}_{i}, \\ \sigma_{k}^{2^{(m+1)}} = \frac{\sum_{i=1}^{n} \tau_{ik}^{(m)} \left[\left(\boldsymbol{y}_{i} - \boldsymbol{\beta}_{k}^{T^{(m+1)}} \boldsymbol{x}_{i}\right)^{2} - 2\delta_{k}^{(m)} \boldsymbol{e}_{1,ik}^{(m)} (y_{i} - \boldsymbol{\beta}_{k}^{T^{(m+1)}} \boldsymbol{x}_{i}) + \boldsymbol{e}_{2,ik}^{(m)}\right]}{2\left(1 - \delta_{k}^{2^{(m)}}\right) \sum_{i=1}^{n} \tau_{ik}^{(m)}} .$$

3 Update the skewness parameters δ_k as solution of

$$\delta_k (1 - \delta_k^2) \sum_{i=1}^n \tau_{ik}^{(m)} + (1 + \delta_k^2) \sum_{i=1}^n \tau_{ik}^{(m)} \frac{d_{ik}^{(m+1)} e_{1,ik}^{(m)}}{\sigma_k^{(m+1)}} - \delta_k \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m+1)} + \frac{e_{2,ik}^{(m)}}{\sigma_k^2 {}^{(m+1)}} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m+1)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m+1)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m+1)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m+1)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m+1)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m+1)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m+1)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m+1)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big[d_{ik}^2 {}^{(m)} + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big] = 0 + \frac{1}{2} \sum_{i=1}^n \tau_{ik}^{(m)} \Big]$$

 \hookrightarrow Use a root finding algorithm, such as Brent's method (Brent, 1973)

Prediction, clustering, model selection

Prediction Predicted response: $\hat{y} = \mathbb{E}_{\hat{\psi}}(Y|\boldsymbol{r}, \boldsymbol{x})$ Component mean : $\mathbb{E}_{\hat{\psi}}(Y|Z=k, \boldsymbol{x}) = \hat{\beta}_{k}^{T}\boldsymbol{x} + \sqrt{\frac{2}{\pi}} \hat{\delta}_{k} \hat{\sigma}_{k}$ The mean of the SNMoE model : $\mathbb{E}_{\hat{\psi}}(Y|\boldsymbol{x}, \boldsymbol{r}) = \sum_{k=1}^{K} \pi_{k}(\boldsymbol{r}; \hat{\boldsymbol{\alpha}}) (\hat{\beta}_{k}^{T}\boldsymbol{x} + \sqrt{\frac{2}{\pi}} \hat{\delta}_{k} \hat{\sigma}_{k}).$ **Clustering of regression data** Calculate the cluster label as

$$\hat{z}_i = \arg \max_{k=1}^{K} \mathbb{E}[Z_i | \boldsymbol{r}_i, \boldsymbol{x}_i; \hat{\boldsymbol{\Psi}}] = \arg \max_{k=1}^{K} \mathbb{P}(Z_i = k | \boldsymbol{r}_i, \boldsymbol{x}_i; \hat{\boldsymbol{\Psi}})$$

Model selection The value of (K, p) can be computed by using BIC, ICL
 Number of free parameters: η_Ψ = K(p + q + 3) - q.

A toy example

Figure: Fitting the NMoE model and the proposed SNMoE to the toy data set analyzed in Bishop and Svensén (2003): $y_i = x_i + 0.3 \sin(2\pi x_i) + \epsilon_i$, with ϵ_i drawn from a zero mean Normal distribution with standard deviation 0.05 and x_i generated uniformly in (0, 1)

Simulated data from a mixture of two linear experts

Figure: Fitted SNMoE to data generated according to the NMoE (top) and the SNMoE (bottom).

Two real datasets

- Tone perception data
- Temperature anomalies data

Figure: Scatter plot of the tone perception data (left) and the temperature anomalies data (right).

Temperature anomalies data set

- Data have been analyzed earlier by Hansen et al. (1999, 2001) and recently by Nguyen and McLachlan (2016) by using Laplace mixture of linear experts
- n = 135 yearly measurements of the global annual temperature anomalies for the period of 1882 2012.

FAICEL CHAMROUKHI Skew-Normal Mixture of Experts

- The SNMoE fit provides a skewness close to zero, which tends to approach a normal distribution.
- The regression coefficients are similar to those found by Nguyen and McLachlan (2016) who used a Laplace mixture of linear experts.
- Model selection : Except the result provided by AIC for the NMoE model, which overestimates the number of components, all the others results provide evidence for two components in the data.

	NMoE			SNMoE		
Κ	BIC	AIC	ICL	BIC	AIC	ICL
1	46.0623	50.4202	46.0623	43.6096	49.4202	43.6096
2	79.9163	91.5374	79.6241	75.0116	89.5380	74.7395
3	71.3963	90.2806	58.4874	63.9254	87.1676	50.8704
4	66.7276	92.8751	54.7524	55.4731	87.4312	41.1699
5	59.5100	92.9206	51.2429	45.3469	86.0207	41.0906

Table: Choosing the number of expert components K for the temperature anomalies data.

Tone perception data set

- Recently studied by Bai et al. (2012) and Song et al. (2014) by using, respectively, robust t regression mixture and Laplace regression mixture
- Data consist of n = 150 pairs of "tuned" variables, considered here as predictors (x), and their corresponding "strech ratio" variables considered as responses (y).

Model selection

		NMoE		SNMoE		
Κ	BIC	AIC	ICL	BIC	AIC	ICL
1	1.8662	6.3821	1.8662	-0.6391	5.3821	-0.6391
2	122.8050	134.8476	107.3840	117.7939	132.8471	102.4049
3	118.1939	137.7630	76.5249	122.8725	146.9576	98.0442
4	121.7031	148.7989	94.4606	109.5917	142.7087	97.6108
5	141.6961	176.3184	123.6550	107.2795	149.4284	96.6832

Table: Choosing the number of experts K for the original tone perception data.

- the number of components is overestimated with the NMoE model
- AIC performs poorly for the two models
- BIC and ICL are the suggested criteria for the analysis of this data, with the SNMoE model, which is more adapted.

Outline

- 1 Introduction and context
- 2 Related work
- **3** Skew-Normal Mixtures of Experts
- 4 Experiments
- 5 Conclusion and perspectives

Summary

- The SNMoE model is suggested for heterogeneous regression data
- it is also dedicated to accommodate regression data with possibly non-symmetric distribution
- Outputs: density estimation, non-linear regression function approximation and clustering for regression data
- The model selection using information criteria tends to promote using BIC and ICL against AIC

Perspectives

- A work under review is on *robust* skew mixture of experts
- Here we only considered the MoE in their standard (non-hierarchical) version.
 → One interesting future direction is to extend it to the hierarchical MoE framework (Jordan and Jacobs, 1994).
- extension to multivariate regression

Thank you!

References I

- A. Azzalini. A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, pages 171-178, 1985.
- A. Azzalini. Further results on a class of distributions which includes the normal ones. Scandinavian Journal of Statistics, pages 199–208, 1986.
- Xiuqin Bai, Weixin Yao, and John E. Boyer. Robust fitting of mixture regression models. Computational Statistics & Data Analysis, 56(7):2347 – 2359, 2012.
- C. Bishop and M. Svensén. Bayesian hierarchical mixtures of experts. In In Uncertainty in Artificial Intelligence, 2003.
- Richard P. Brent. Algorithms for minimization without derivatives. Prentice-Hall series in automatic computation. Englewood Cliffs, N.J. Prentice-Hall, 1973. ISBN 0-13-022335-2.
- F. Chamroukhi. Robust mixture of experts modeling using the t-distribution. Neural Networks Elsevier, 79:20–36, 2016. URL http://chamroukhi.univ-tln.fr/papers/TMoE.pdf.
- J. Hansen, R. Ruedy, J. Glascoe, and M. Sato. Giss analysis of surface temperature change. Journal of Geophysical Research, 104:30997–31022, 1999.
- J. Hansen, R. Ruedy, Sato M., M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl. A closer look at united states and global surface temperature change. *Journal of Geophysical Research*, 106:23947–23963, 2001.
- Salvatore Ingrassia, Simona Minotti, and Giorgio Vittadini. Local statistical modeling via a cluster-weighted approach with elliptical distributions. *Journal of Classification*, 29(3):363–401, 2012.
- R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3(1): 79–87, 1991.
- Wenxin Jiang and Martin A. Tanner. On the identifiability of mixtures-of-experts. Neural Networks, 12:197-220, 1999.
- M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6:181-214, 1994.
- Feng Li, Mattias Villani, and Robert Kohn. Flexible modeling of conditional distributions using smooth mixtures of asymmetric student t densities. *Journal of Statistical Planning and Inference*, 140(12):3638 – 3654, 2010. ISSN 0378-3758. doi: http://dx.doi.org/10.1016/j.jspi.2010.04.031.

References II

- Tsung I. Lin, Jack C. Lee, and Shu Y Yen. Finite mixture modelling using the skew normal distribution. Statistica Sinica, 17: 909–927, 2007.
- X. L. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80(2): 267–278, 1993.
- Hien D. Nguyen and Geoffrey J. McLachlan. Laplace mixture of linear experts. Computational Statistics & Data Analysis, 93: 177–191, 2016. doi: http://dx.doi.org/10.1016/j.csda.2014.10.016.
- Weixing Song, Weixin Yao, and Yanru Xing. Robust mixture regression model fitting by laplace distribution. Computational Statistics & Data Analysis, 71(0):128 - 137, 2014.
- Y. Wei. Robust mixture regression models using t-distribution. Technical report, Master Report, Department of Statistics, Kansas State University, 2012.
- C. B. Zeller, V. H. Lachos, and C.R. Cabral. Robust mixture regression modelling based on scale mixtures of skew-normal distributions. *Test (revision invited)*, 2015.

Identifiability of the SNMoE model

 $f(.; \Psi)$ is identifiable when $f(.; \Psi) = f(.; \Psi^*)$ if and only if $\Psi = \Psi^*$. Ordered, initialized, and irreducible SNMoEs are identifiable:

- Ordered implies that there exist a certain ordering relationship such that $(\beta_1^T, \sigma_1^2, \lambda_1)^T \prec \ldots \prec (\beta_K^T, \sigma_K^2, \lambda_K)^T;$
- \blacksquare initialized implies that α_K is the null vector, as assumed in the model
- irreducible implies that if $k \neq k'$, then one of the following conditions holds: $\beta_k \neq \beta_{k'}, \ \sigma_k \neq \sigma_{k'}$ or $\lambda_k \neq \lambda_{k'}$.

 \Rightarrow Then, we can establish the identifiability of ordered and initialized irreducible SNMoE models by applying Lemma 2 of Jiang and Tanner (1999), which requires the validation of the following nondegeneracy condition:

- The set {SN($y; \mu(\boldsymbol{x}; \boldsymbol{\beta}_1), \sigma_1^2, \lambda_1$),..., SN($y; \mu(\boldsymbol{x}; \boldsymbol{\beta}_{3K}), \sigma_{3K}^2, \lambda_{3K}$)} contains 3K linearly independent functions of y, for any 3K distinct triplet $(\mu(\boldsymbol{x}; \boldsymbol{\beta}_k), \sigma_k^2, \lambda_k)$ for k = 1, ..., 3K.
- \hookrightarrow Thus, via Lemma 2 of Jiang and Tanner (1999) we have any ordered and initialized irreducible SNMoE is identifiable.