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Scientific context
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m Heterogeneous regression data < underlying unknown partition

m Data issued from non-linear regression function

Modeling framework

m Latent variable models : f(z|0) = [ f(x,z|0)d

generative formulation :
z ~ g(2|0)

x|z ~ f(z]2,0)
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Mixture-of-Experts (MoE) modeling framework

Observed pairs of data (x,y) where the response y € R for the predictors
x € RP governed by a hidden categorical random variable Z

Mixture of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs, 1994) :
K
fyle:0) = > m(mw) filyle;0k)

Gating network Expert Network

exXp (wko-‘rng‘)

Gating network (e.g softmax): 7y (x; w) = TrS KT oxp (et TT)
=i

Experts network (e.g Gaussian regressors): fi(y|@; 05) = ¢ (y; pu(x; By), o7)
with parametric (non-)linear regression functions u(x; 3;,)

is parameterized by 6 = (w”, 0{, ce BQI;)T

Non-normal MoE, for data with atypical observations, and with possible
heavy tailed and asymmetric distributions: Chamroukhi (2016, 2017);
Nguyen and Chamroukhi (2018)
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Standard MLE of the MoE model

m MLE: 6 is commonly estimated by maximizing the observed-data log-likelihood:
0, € arg max L(0)
with

L(O) =In f((@1,1),- - (@, 91);0) = 227 In S5, mi(@is w) f (y; |2 01).
— the EM algorithm (Dempster et al. (1977))
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Standard MLE of the MoE model

m MLE: 6 is commonly estimated by maximizing the observed-data log-likelihood:
0, € arg max L(0)
with

L(O) = In f((x1,91),- -, (@0, 91);0) = 21y In D20, me(@is w) f (y,]2i; O0).
< the EM algorithm (Dempster et al. (1977))

< The standard MLE of MoE when p is large (high-dimensional setting)
< the features are possibly correlated and sparse
— Looking for a sparse models

Regularized MLE of the MoE

RMLE: 6 is estimated by maximizing a penalized observed-data log-likelihood:

~

0, c arg max PL(0)

with PL(@) = L(0) — Pen(0)
m < Pen(6) should encourage sparsity

m parameter estimation and selection problem
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Proposed Regularized Mixture of Experts model

K K-1 p
Pen(6) = > MellBill+>_ wrllwsll + 5wl
k=1 k=1
Lasso-like pen. Elastic-Net like pen.

m Lasso penalty for the experts — encourage a sparse solution

m The elastic net penalty (Zou and Hastie (2005)) for the gating network:
— reduce the norm of the estimated values of the gating network parameters by
using the Lo penalties;
— the Lasso penalty to recover a sparse solution

m The convexity of L1 and Ly penalties have also advantageous numerical properties.

m If the correlation between the features is high, one can add Ls penalties for the
expert network.
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Regularized MLE via an EM algorithm

m The penalized log-likelihood function:

K K—-1
PL(O) = L(O)—~ Y MellBills = D (vullwnllr + gllwkllé) (1)
k=1 k=1

m The penalized complete-data log-likelihood function:

K K—-1
PLe(8) = Le(8)— D AullBil = Y- (uellwll + Sllwill))  (2)
k=1 k=1

with

O
—

n K
Lc(e) = lnf((w17y17 Zl))7 c00g (wn7yn7 Z”);B) = Zzzm log [ﬂ'k(mww)f(yz'wu

i=1 k=1

such that z;, = 1 iff z; = k (the data pair (x;, y;) originates from expert k
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Statistical inference for RMoE

Theorem (Khalili (2010))

Let (Vi)i=1,...n = (Xi,Yi)i=1,...,n. be a random sample from a density function f(v;8)
(8 = (01,62, ..,05)) which satisfies some regularity conditions:
The joint density of V; is given by

F (i) = f(@:) Y ma(ai; w)p(y;|@s; Or).

Assume that p/y/n — 0 as n — co. Then, there exists a local maximizer 0., of the
regularized log-likelihood function PL(0) (1) for which

~ 1 »
8. = 6o0ll = O(=(1 + din + a1n))

where

qin = mka;X{/\k/\/ﬁ : By # 0} qin = H;E;X{%/x/ﬁ s wyy # 0}

m By choosing max i = O(\/ﬁ),mg,x A = O(y/n) we have the root-n consistent

property for én
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Parameter estimation for RMoE
Khalili's method:

m Approximates the L; penalty function in a some neighborhood by an ¢ -local
quadratic function

n 2 2
tl = nito| + (" —15).

< Almost surely none of the components will be exactly zero.

m Needs using a threshold to recover the zero coefficients
< The size of threshold affects the degree of sparsity of the solution.

m The Newton-Raphson algorithm is used to update the M-step of the EM algorithm.
— This approach still require computing the inverse matrix.

In our proposal:

m A block EM algorithm with coordinate ascent algorithm to estimate the
parameters:
— Exact L penalty regularization;
— Avoids computing matrix inversion;
— Avoids using a threshold to recover the zero coefficients.
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Block EM algorithm with coordinate ascent

E-step
m Compute the conditional expectation of the penalized complete-data log-likelihood
Q6:6) = E|[PL.(6)D;6“]
n K
= >N 70 log [ (wi; w) fi (y,|ai; 0x)]

i=1 k=1
K K-1 p

= XellBrell = D (llwwll — 5||wk||§)~
k=1 k=1
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Block EM algorithm with coordinate ascent

E-step
m Compute the conditional expectation of the penalized complete-data log-likelihood

Q6;0') = E[PLC(OND;G@]

= Z 7 1og [ (@; w) fi (@i 04)]

i=1 k=1
K K—-1 P
2
= XellBrell = D (llwwll — 5 llwil[2)-
k=1 k=1

— Calculate the posterior component probabilities:
Fk(wi;w@))./\/'(yi; (a) +90T,3(q),0;(cq)2)

m(@i; w@)N (yi; B3 + 2T B[P, %)

70 =P(Z; = kly;,:;0'9) =

WMx

< As in standard MoE
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Block EM algorithm with coordinate ascent (cont.)

M-step
m Maximizing the Q function: 8¢tV ¢ argmaxe Q(6; 0(‘1)) with

Q(6;0') = Q(w;0'”) + Q(B,0;0'?),

where
K K—1
Q(w; 07) = ZZ 9 log mi (i w)— D (yellwi |
=1 k=1 k=1

— a weighted regularized multiclass logistic regression problem
and

0(11) ZZT'L(IZ) IOgN y176k0+m ﬁk?a-k:

k=1 1i=1

— K independent weighted LASSO problems

— £wild),

K
> AkllBylh
k=1

®3)

(4)
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Updating the gating network parameters

m Coordinate ascent algorithm to update w Tseng (1988, 2001)

m wy; is updated by maximizing the component (k, 5) of (3) given by

F(wr;;09) — ypwy; , ifwe; >0 (F1)
Q(wgj; 0(0)) = { F(0; 0(0)) , ifwg; =0 )
F(wkj; O(Q)) +vewks; , ifwg; <0 (F2)

n n K—1
o
F(wkj;g(LZ)) _ E Ti(;g)(ka‘ngﬂ?i)—E :10g(1—|—§ :ewz(ﬁ—wl mt)_gwij. (5)
i=1 =1 =il

v

Univariate Newton-Raphson algorithm

m I and F> are smooth univariate concave functions in wy;. < Univariate
Newton-Raphson algorithm can be used to update wy;

WD @ _ (azF(wkj; ) )

OF (wy;; 0'7)
ki T Wy 2wy, (s) (

8wkj

- "YkSIgn(’LUk])) ’ (s)?
wy

92 F (wy,;;0(?) and OF (wj;

0(2)
3 have closed-form.
Wi 5

where 9wy,
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Updating the expert parameters

M-step (cont.)

m Update fy; using coordinate ascent algorithm with soft-thresholding operator

IB[S+1] = ( )2 Z 2 'EZ]]J"U /Z T’L(k?)x?]7

s s s|T .
where il = y; — Bl — BE @, + Bi2i;, Sy (u)]; = sign(u;)(|us| — 7)+ and

(z)+ = max{z,0} in the sth loop of the coordinate ascent algorithm.

[s+1 27_1(]:1) vi—x [s+1 /ZTZ(:)~
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Updating the expert parameters

M-step (cont.)

m Update fy; using coordinate ascent algorithm with soft-thresholding operator

IB[S+1] = ( )2 Z 2 'EZ]]J;U /Z T'L(Ig)xfja

s s s|T .
where il = y; — Bl — BE @, + Bi2i;, Sy (u)]; = sign(u;)(|us| — 7)+ and

(z)+ = max{z,0} in the sth loop of the coordinate ascent algorithm.

[s+1 27_1(]3) i — s+1 /Z 7_Z(Ig).
m Rerun the E-step, keep

+2 2 1 1 2 2 1 1
(w ](Cq )7wl(cq+ )) _ (wl(;(l;r )7w(lﬁL )) (,B(lﬁL ) ﬁ(qu )) _ (/Bl(c%+ )7 I(€¢1+ ))7

(¢+2)

and update ai as follows

q+2) Z (q+1) ﬂ(q-&-?) I@(q+2) /Z (q+1)
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Simulation study
Simulation protocol

e & ~ N(0; %) with corr(azj, ;) = 0.57 9", K =2
e Sample size: n = 300, 100 different data sets;
e The regression coefficients:

(Bloﬁﬂl)T = (0707 1’530’0707 1)T;Ul =1

(B20,82)" = (0,1,-1.5,0,0,2,0)";02 = 1
(wi0,w1)" = (1,2,0,0,-1,0,0) ;03 = 1

Considered approaches for comparison

e The standard MoE;

e MoE+L; (MoE with Ly penalties in the gating network);

e MoE-BIC (MoE with model selection using BIC criterion - 100 submodels);
e MIXLASSO (MLR with Lasso penalties) (see Khalili and Chen (2007));

Evaluation criteria

e The sensitivity /specificity (sparsity);
e The parameter estimation (density estimation);
e The misclassification error: Adjust rand index - ARI (clustering).
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Sensitivity /specificity result

m Sensitivity (S1): proportion of correctly estimated zero coefficients;

m Specificity: proportion of correctly estimated nonzero coefficients.

Method Expert 1 Expert 2 Gate
S1 Sa S1 Sa S1 Sa
MoE 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000
MoE+ L, 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000
MoE-BIC 0.920 | 1.000 | 0.930 | 1.000 | 0.850 | 1.000
MIXLASSO 0.775 | 1.000 | 0.693 | 1.000 | N/A N/A
Our MoE-Lasso+L, | 0.700 | 1.000 | 0.803 | 1.000 | 0.853 | 0.945

Table: Sensitivity (S1) and specificity (S2) results.
m MoE and MoE+Ls could not be considered as model selection methods since their
sensitivity equal zero.
m MIXLASSO can detect the zero coefficients in the experts. However, this model
has a poor result when clustering the data.
m The MoE-Lasso+ L2 model can detect the zero coefficients in the experts and the
gating network.
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Parameter estimation for expert 1
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Parameter estimation for expert 2
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Parameter estimation for gating network

m (w0, w1)T =(1,2,0,0,-1,0,0)7.

MoE MoE-L-
{aEm Jr=
=, N
“ T S e
= . B
MoE-BIC MoE-Lasso + L»
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Result for data clustering

Model MoE MoE+ Lo MoE-BIC MoE-Lasso + Lo MIXLASSO
Corate | 89.57%(1 65%) | 89-62%(1.63%) | 90-05%(1.65%) | 89-46%(1.76%) | 52-89%(1.92%)
ARI 0.6226( 053, 0.6241( o52) 0.6380( 053) 0.6190( o56) 0.4218( o50)

Table: clustering accuracy results (correct classification rate and Adjusted Rand Index).

Remarks

m MoE-BIC provides the best results. However, it is hard to apply BIC in reality
especially for high dimensional data, since this involves a huge collection of model
candidates.

m MIXLASSO can detect zero coefficients in the experts, but it provides a poor
result when clustering data.

m MoE-Lasso+ L2 can detect zero coefficients in the model and provide a
competitive result with MoE, MoE-L; in term of clustering, although it also causes
bias to the non-zero coefficients.
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Applications to real data sets

m For real data sets, we calculate the mean squared error and the correlation
between the response variable Y with its predictor Y, where

K
Y = Zﬂ'k(iﬂ;’lb)(/éko + CCT:E'}IC)
k=1

m Housing data: 13 features, 506 observations, K = 2.

MoE MoE-Lasso+L2 (Khalili) | MoE-Lasso + Lo
R? 0.8457 0.8094 0.8221
MSE | 0.1544 577, 0.2044 709, 0.1989 610)

Table: Results for Housing data set.

m Baseball salary data: 32 features, 337 observations, K = 2.

MoE MoE-Lasso + L- MIXLASSO
R? 0.8099 0.8020 0.4252
MSE | 0.2625 755 0.2821( 633 1.1858(2.792)

Table: Results for Baseball salaries data set.
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The proximal Newton method

m We recently improve the proposed algorithm by using the proximal Newton
method (Lee et al. (2006), Lee et al. (2014) and Friedman et al. (2010)) for
updating the gating network parameters.

m The idea of the proximal Newton method:
e Approximate the smooth part of Q(w; 0(‘7)) with its local quadratic form;
e Use coordinate ascent with soft-thresholding operator to solve the resulting
approximated convex optimization problem;
e Combine with backtracking line search to update w.
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Extension result for proximal Newton method

m Coordinate ascent algorithm (CA) VS proximal Newton (PN) method:

Criteria MoE-Lasso + Ly (CA) | MoE-Lasso + L2 (PN)
C.Rate 89.46%1.76%) 89.53%1.65%)
ARI 0.6190 os6) 0.6210, o52)
PL(6) value —558.140(15 90) —558.410(13 03)

Table: Simulation results.

m Application of the proximal Newton algorithm to the residential building data set:
107 features, 372 observations, K = 3.

Before clustering After clustering
Method R? MSE R? MSE
Proximal Newton | 0.9887 | 0.0120(.579y | 0.9993 | 0.000654.002)

Table: Results for residential building data set.
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Conclusion and perspectives

Conclusion

We propose a regularized MoE which does not require using approximations as in
standard MoE regularization

A blockwise EM algorithm with coordinate ascent algorithm is proposed to
monotonically maximize the RMoE objective function

The updating of the gating network for some situations is time consuming since we
don’t have a closed-form

The algorithm has been improved by using proximal Newton method to update the
gating network, which has a closed-form update for each parameter and improve
the running time

Future work: Estimation and feature selection for hierarchical MoE and MoE with
discrete data, ...

Consider the case p > n
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Thank you!
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